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Abstract—Improvement of EHD devices is hindered by the absence of the necessary 
information on the functional dependence of injection current density on the electric field 
strength. Investigation of the issue presents a great challenge because the quantity measured 
experimentally is the total current that is dependent on some almost inseparable factors. 
Moreover, the present theoretical dependences contradict each other and have not been 
verified by the experiment. In view of this, the determination of injection function is an actual 
problem and this paper is devoted to an attempt to solve it. 

I.  INTRODUCTION 

There are a number of EHD devices, basing on the injection charge formation mechanism 
[1], such as pumps, atomizers, heat exchangers and so on. Appropriate technologies have 
their unique advantages—high efficiency, durability, simple design, low acoustic noise, 
light weight, the rapid control of performance by varying the applied voltage, and low 
power consumption—over classical analogs, at least for small spatial scales [2]. However, 
while there are a variety of injection EHD devices, their improvement is hindered by the 
absence of necessary information on the functional dependence of injection current 
density on the electric field strength (or the so-called injection function). Investigation of 
the issue is a great challenge, since the quantity measured experimentally is the total 
current (that is dependent on some almost inseparable factors) and voltage rather than the 
current density and electric field strength, which actually determine the injection function. 
Moreover, the existing theoretical dependences [3] contradict each other and have not 
been verified by the experiment. Accordingly, the works of various research teams use 
different theoretical expressions or even autonomous injection. The most of these 
functions were analyzed and represented in the review article [4]. Thus, it is practically 
impossible at the moment to design EHD devices quantitatively due to the lack of 
certainty in the boundary condition for the current density. In view of this, the 
determination of injection function is an actual problem, and this paper is devoted to an 
attempt to suggest a solution. 

Despite a number of disagreements in theoretical injection models [3–5], the most of 
researchers maintain that, for a fixed metal-liquid combination and for the isothermal 
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liquid case, the injection function depends largely on the value of the local electric field. 
It thus relates the current density and the value of the local electric field at the liquid-
metal interface. However, the characteristic that can be measured experimentally is the 
current-voltage one, whereas relationships between total current and current density as 
well as voltage and electric field strength are generally quite complicated and unknown. 
To find the electric field intensity, one has to solve the Poisson’s equation and, moreover, 
to know the distribution of the space charge density, as it strongly affects the target value. 
In turn, the total current in the electrode system is governed by the superposition of the 
charge formation mechanisms (such as injection by the electrode and charge dissociation 
in the bulk) and the current passage processes. In the case of a dielectric liquid, the 
processes are determined by the two main components—migration and convective, the 
latter capable of playing a major role [6]. So, even solving the direct problem to find the 
total current dependence on the applied voltage by the known current density dependence 
on the electric field requires simulation of high-voltage current passage processes taking 
into account migration, but convective components of the current density (i.e., the EHD 
flow) and not only surface charge formation mechanism, but the space one (dissociation). 

Such a method of computer simulation was developed and implemented [7, 8] 
relatively recently and extended later to the case of ramp voltage [9, 10]. The 
corresponding current-voltage characteristics (obtained at ramp voltage) in [5] were 
termed dynamical CVC (DCVC). Their main features that are important in the context of 
the present work are as follows: high speed of acquisition (both in the experiment and in 
the simulation), ease of repeatability testing and data collection at virtually constant 
external conditions [11, 12]. 

 
II.  SIMULATION TECHNIQUE 

A. Mathematical Model 
The computer simulation rests on the solution of the Nernst-Planck, Poisson and Navier-
Stokes set of equations for isothermal incompressible liquid dielectrics [5, 13] using 
COMSOL Multiphysics software package:  

 푑푖푣(푬) = ρ/εε  (1) 
 푬 = −∇φ (2) 
 휕푛 /휕푡 + 푑푖푣(풋풊) = 푔(푛, 푬) (3) 
 풋풊 = 푛 푏 푬 − 퐷 ∇푛 + 푛 풖 (4) 
 ρ = 푒(푛 − 푛 ) (5) 
 γ 휕풖/휕푡 + γ (풖, ∇)풖 = −∇푃 + η ∆풖 + ρ 푬 (6) 
 푑푖푣(풖) = 0 (7) 
 푔(푛, 푬) = σ /(푒 (|푏 | + |푏 |) εε ) − 
 푒 (|푏 | + |푏 |)/(εε ) 푛 푛  (8) 

where E is the electric field strength, ρ is the space charge density, φ is the electric 
potential, n is the ion concentration, j is the density of ion flux, σ0 low-voltage 
conductivity, u is the fluid velocity, P is the pressure, ε is the relative electric permittivity, 
γ is the mass density, η is the dynamic viscosity, b is the ion mobility, D is the diffusion 



Proc. 2016 Electrostatics Joint Conference  3 

coefficient, ε0 is the electric constant, e is the elementary electric charge, t is the time; 
subscript i indicates the ion species. Upon the injection of ions into a low-conducting 
liquid, the system has three types of ions (those injected and two dissociated species); yet, 
to simplify the model and to reduce the solution time, the set involves just two kinds of 
ions on the assumption of the similarity of properties between injected and positive 
dissociated ions. All ions are assumed to be monovalent. 

B. Geometry and Boundary Conditions 
The geometry of computer model and boundary conditions for the set of equations are 
presented in Fig. 1. The blade-pane electrode system was chosen for the study, as it 
features highly non-uniform electric field distribution needed for intensive injection 
charge formation and provides the stable EHD flow and total electric current (e.g., unlike 
the needle-plane electrode system where strong injection leads to unstable 
electroconvection and fluctuating total current [7]). The simulation uses a 2D model of 
geometry that is close to the real parameters of the experimental model, with particular 
emphasis on securing a good match between the shape of the injection electrode in the 
model and the experiment. Positive ion injection, 푓 (퐸), and negative ion loss, 
푑 (푛 , 퐸), were set on the blade electrode, with just positive ion loss, 푑 (푛 , 퐸), on the 
plane electrode. The charge loss is believed to be equal to the total current density for 
ions arriving to the boundary from the bulk:  

 푑 (푛, 퐸) = 푛 푏 퐸 − 퐷 ∇ 푛  (9) 

where 푁 is the surface normal. A detailed study of the simulation method can be found in 
[7, 8].  

 
Fig. 1. Geometry of the computer model and boundary conditions. 

In Fig. 1, 푈(푡) means the positive and negative ramp voltage with a ten-second period 
(five seconds for the rise and the drop, respectively). The test liquid in the present study 
was chosen to be polydimethylsiloxane-5 (PDMS-5) with the following properties: ε = 
2.4, η = 5.9×10−3, γ = 920 kg/m3, σ0 = 2.4×10−12 S/m, b = 10−8 m2/V/s. According to the 
Einstein relation, the diffusion coefficient of monovalent ions is D = 2.6×10−10 m2/s. 
However, in view of the small contribution of the diffusion component to the total flow as 
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compared to the migration and convection cones, we use an overestimated value of the 
diffusion coefficient (D = 10−9 m2/s) in the simulation to increase the stability of the 
numerical solution. 

C. Method for Estimation of Injection Function 
The underlying idea for the estimation of the injection function is to select such electric-
field dependence of the current density on the surface of the blade electrode that would 
give quantitative agreement between the integral electric current characteristics of the 
experiment and the simulation. The latter were taken to be DCVCs, measured and 
calculated over a wide voltage range. To compare the simulation and experiment 
correctly, the total electric current (in Amps) in calculation by the simulation results (in 
Amps/m) was doubled due to the reflexive symmetry and multiplied by the actual length 
of the experimental cell (0.06 m). 

The procedure for finding the injection function consists of a number of consecutive 
steps. The first one is to obtain experimental DCVCs. A key requirement here is using 
such combination of liquid and electrode system that allows the typical injection currents 
to be easily detected against the background of conductivity currents.  

Then, the testing injection function is introduced into the computer model, and the 
DCVCs are calculated on the basis of the set of Eq. (1)–(8) and the Shockley-Ramo 
theorem [14, 15] also known as the Sato’s equation (10) [16]. The last allows finding the 
total electric current, which is an experimentally measurable quantity, from the current 
density obtained in computer simulation.   

 퐼 = ∫ (풋, 풇푬)푑푉, (10) 

where 풇푬 = 푬/φ  is the weighting electric field, φ  is the applied voltage and 푉 is the 
the volume. 

The next step is to compare results and refine the testing function. The procedure is 
repeated until a match with a desired precision is attained. The step is illustrated in Fig. 2.  

Finally, to verify the results by an independent parameter, which was selected to be the 
distribution of the EHD flow, an experimental study of the velocity field is to be done and 
then compared with the calculated values obtained at the last iteration. 

 
Fig. 2. Graphic illustration of the injection function estimation method by DCVC. 
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III.  RESULTS AND DISCUSSION 

A. Electric Current Characteristics 
Let us consider the results. Fig. 3 shows the experimental and numerical current-voltage 
characteristics of the blade-plane electrode system in a wide voltage range (approximately 
up to 27 kV). Positive and negative ramp voltage (rise and drop segments) is applied to 
the system under study in an experiment using a picoammeter to measure the electric 
current. In the simulation, the total current was calculated by the current density (10) with 
the help of Sato’s equation. The maximum current value attained in the system during the 
experiment, 300 nA, corresponds to the 27 kV and positive polarity on the blade-
electrode (Fig. 3, curve 1). Upon the polarity inversion, the maximum current markedly 
reduces to the value of 15 nA (Fig. 3, curve 2). In view of significant nonlinearity of 
experimental DCVC for positive polarity and such a large difference in the current values 
after the polarity change, it can be concluded that the current at the positive polarity is 
determined by the injection. Thus, PDMS-5 and the blade-plane electrode system perform 
well in implementation of the injection function estimation method. 

 
Fig. 3. Experimental DCVC for positive (curve 1) and negative (curve 2) polarity as well as DCVC obtained 
from the simulation (curve 3). 

In Fig. 3 (curves 1 and 2), the difference between the direct and reverse branches (the 
so-called hysteresis) is related to the fact that the system fails to adapt to the dynamically 
varying voltage, and the liquid accumulate the space charge, which reduces the external 
electric field and thereby decreases injection from the high voltage electrode. Therefore, 
the downward part of the DCVC loop lies below the upward one. 

Curve 3 in Fig. 3 shows the DCVC obtained at the last iteration of the above method. 
The estimated injection function of the following form: 

 푓 (퐸) = 퐴 퐸 + 퐴 (퐸 − 퐸 )  휃(퐸 − 퐸 ), (11) 

where 휃 is the Heaviside step function and 퐸  is the threshold value of electric field, 
yields a good agreement with the experimental DCVC, when 퐴 = 5.3×107 1/(m V s), 
퐴 = 0.9×103 1/(V2 s), and 퐸 = 1.3×107 V/m. It describes two processes: the 
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electrochemical reaction between the electrode metal and the liquid (the first term) and 
the high-voltage injection (the second term). The first process has no threshold and starts 
as soon as the electric field appears. The second one has a threshold and becomes active 
after a certain moment, when the electric field strength in the high voltage electrode 
exceeds the value of 퐸 . The only small difference between the calculated and 
experimentally obtained DCVCs is the absence of the hysteresis in the simulation. It 
should be noted that the injection function dependence on the electric field was selected 
as simple as possible (in our case, we got a set of linear and quadratic functions). 

B. Velocity Field 
Apart from the current-voltage characteristics, the velocity field of an EHD flow in the 
blade-plane electrode system was measured by the PIV method. The latter is commonly 
used in the experimental fluid dynamics [17]. It consists of seeding a flow with small 
tracer particles and tracking these particles to determine the velocity field of the test zone. 
The laser illuminates the cross-section of the system by two pulse scintillations, and at 
these instants, a camera records the positions of the illuminated particle. Subsequently, 
basing on the displacement of the particles in the two frames, commercial program DaVis 
restores the velocity field. 

 
Fig. 4. Velocity field distribution in blade-plane electrode system in the case of experiment (left-hand side) and 
simulation (right-hand side). 

The PIV experiment was held under the same conditions, when the electric current 
characteristics were obtained (at ramp voltage). The black lines on the left-hand side of 
Fig. 4 represent velocity contour lines obtained in the experiment at 13 kV. The velocity 
field was restored only by a single pair of frames, so the velocity contours have small 
fluctuations (using more pairs of frames was not possible due to the varying voltage). The 
contour lines with similar values (14 cm/s, 9 cm/s, and 5 cm/s) are presented on the right-
hand side of Fig. 4, which corresponds to simulation, which used the estimate (11) as the 
injection function. Gray lines on the left- and the right-hand sides of Fig. 4 illustrate the 
fluid streamlines in the experiment and the simulation, respectively. The experimental 
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and simulation contour plots can be seen to agree very well qualitatively and 
quantitatively (within the experimental data accuracy). 

 
IV.  CONCLUSION 

The proposed method is a realistic way to quantify injection function. It can be used to 
obtain the data needed to design EHD devices, as well as to validate the existing 
theoretical formulas.  

Despite the relatively high complexity (the combination of calculation and experiment 
with the restoration of the exact geometry of the electrode), simplification of the 
technique seems unlikely in view of the essential role of each of the factors taken into 
account (convection, electrode shape, conductivity and so on).  

For a better match with experimental currents, the injected ions may have to be 
described using a single type of particles (i.e., add another Nernst-Planck equation). 
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