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Abstract— A lattice Boltzmann method (LBM) is developed to solve the electric field-space 

charge coupled problems. Instead of solving the macroscopic current continuity equation and 

the Poisson’s equation, two discrete lattice Boltzmann equations are formulated and solved to 

obtain the distributions of charge density and electric potential. The non-equilibrium extrap-

olation scheme is used to treat the boundary conditions with complex geometry. Our technique 

is verified with several test cases for which analytical solution and/or numerical results exits. A 

key feature of this methodology lies in its natural coupling with the LBM for fluid flow. As a 

demonstration, the injection induced electroconvection of dielectric liquids in a concen-

tric-cylinder configuration is considered. 

I. INTRODUCTION 

Electrohydrodynamics (EHD) is an interdisciplinary science dealing with the interaction 

of fluid with electric field [1]. The complex physics involved in electroconvective phe-

nomena together with some promising applications draw a wide attention to this very 

active field. Some representative applications include EHD pumps, electronic cooling, 

heat transfer augmentation, active flow control with electric field, charge injection atom-

izers, electro-spinning, etc [2]. In general, EHD flows possess strong nonlinearity, which 

encourages the use of direct numerical simulation approach to gain deeper insights into 

such physical phenomena. 

During the last three decades, the lattice Boltzmann method (LBM), which is a 

mesoscopic modelling approach, has experienced rapid development and has become an 

established alternative for complex flows [3,4]. However, only until recent years, LBM has 

been introduced into the EHD field [5], which is in contrast to the fact that LBM has long 

been applied to magnetohydrodynamic (MHD) flows since the early 1990s. Indeed EHD 

and MHD can be viewed as two special subjects due to the interaction between the elec-

tromagnetic field and flow motion [1]. However, as far as we know, the LBM has not been 

well established for EHD problems yet. 

The material presented here represents the first results of a broader research project 

aimed at extending the application of the LBM in simulating EHD flows of single-phase 

dielectric liquids. In a recent study [6], we have developed a unified LBM based on three 
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consistent lattice Boltzmann equations (LBEs) to calculate the fluid flow, electrical po-

tential and charge density distribution. The Chapman-Enskog multi-scale analysis has also 

been performed to link the mesoscopic LBEs with the macroscopic governing equations. 

By this way, we provide a solid theoretical basis for our LBM. However, only a simple 

geometry problem, i.e., the unipolar injection induced electroconvection in a plate-plate 

configuration, was considered to validate the method in [6]. The objective of this study is 

to extend the LBM to EHD flows with complex geometries. The first and crucial step is test 

the feasibility of the LBM with the electric field-space charge coupled problems with 

complex geometries. Later a natural coupling with the LB model for flow motion can be 

achieved.  

The reminder of this paper is organized as follow. In section II the macroscopic gov-

erning equations are described. Then in section III we present the LBEs for electric po-

tential and charge density equations. In particular, the method for boundary condition 

treatment is explained in details. After that, in section IV the method is verified with sev-

eral test cases. As an application, the results with the injection induced electro-convection 

of dielectric liquids in a concentric-cylinder configuration are also presented. Finally a 

conclusion is drawn up in the last section. 

II. MATHEMATICAL FORMULATION 

A. Governing equations 

For electric field-space charge coupled problems, the governing equations include the 

potential and charge conservation equations. In this study, we consider the simplest case 

with only one charge species, and thus the current continuity equation reads: 

0
q

t


 


J ,                                                     (1) 

where q is the volume charge density and J  is the current density. There are three basic 

transport mechanisms for free charges in the electric and flow fields: drift under the action 

of the electric field, convection along with the flow field and charge diffusion, 

qK q D q   J E u ,                                             (2) 

where the vectors E   and u  are the electric field and the fluid velocity field; the scalars K 

and D are the ion mobility and the diffusion coefficient. For turbulence flows, besides the 

molecular diffusion, D also includes an extra contribution due to turbulent transport. 

The space charges are related to the electrical potential by the Poisson’s equation,  
2 /V q                                                      (3) 

where V is the electrical potential and   is the dielectric permittivity. For vacuum, 
12

0 8.854 10 /F m     . The electric field is defined as,  

V E .             (4) 

As shown through Eqns. (1-4), the electric field and charge density distribution are 

nonlinearly coupled, as the charge distribution influences the electric field which in turn, 

modifies the space charge distribution by the ion drift mechanism. Another characteristic 

of the electric field-space charge coupled problems lies in the typical smallness of the 

charge diffusion coefficient. That is, Eqn. (1) is a strongly convection-dominating equation. 
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For conventional methods based on the partial differential equations (PDEs), special dis-

cretization schemes or methods (such as the particle in cell method, the method of char-

acteristic, the flux corrected transport and total variation diminishing schemes and so on) 

are unusually required to solve this equation to obtain low numerical diffusion and oscil-

lation-free solutions [7,8]. 

B. Boundary conditions 

For the test cases presented in Section 4, there are two types of boundary conditions with 

the two independent variables q  and V : Dirichelt and Neumann conditions. The electric 

potentials on the electrodes are either specified with a given value or set to be zero to 

represent the grounded case: electrode appliedV V  or 0. Depending on the physical problems 

modelled, the value of charge densities on the electrodes can either be prescribed or show a 

zero gradient: electrode appliedq q  or electrode 0q n   , with n denotes the normal to the elec-

trode surface. In addition, on the symmetry planes, all dependent variables are assumed to 

have a zero gradient in the direction normal the plane (i.e., Neumann condition). 

III. 3. THE LATTICE BOLTZMANN METHOD 

The LBM is a mesoscopic method and it is most frequently used to compute solutions of 

the Navier-Stokes equations. However, the idea of mesoscopic modelling can also be 

applied to other macroscopic systems. In this study, a LBM approach is formulated for the 

Poisson’s equation and the current continuity equation. The basic idea of LBM is to solve a 

set of discrete equations for the mesocopic distribution functions in a domain discretized 

by the Cartesian grid. Then the macroscopic quantities (i.e., the fluid density and velocity, 

electrical potential and charge density) can be determined from their corresponding dis-

tribution functions [9].  
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Fig. 1. (a) Lattice Boltzmann discretization of a domain containing a circle and (b) the D2D9 model. 

Since the discrete equations are first order PDEs, they are much easily to solve than the 

macroscopic governing equations. In addition, the solution procedure of these discrete 

equations can be vividly understood by the collision-streaming process of some pseudo 

particles. An example of the discretization grid for the domain containing a circular is 

shown in Fig. 1a. For 2D problems, the D2Q9 velocity discretization scheme is commonly 

used. In other words, during one time step, the pseudo particles can either stay at the 

original place or stream to the eight neighboring locations in certain directions; see Fig. 1b. 

For D2Q9 model, the nine velocity vectors are given by 
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where the streaming speed c is defined as /c x t   , x  and t  being the size of lattice 

cell and the lattice time step, respectively. The weight function j  for the jth velocity 

direction is given as 

4 / 9 0

1/ 9 1 4

1/ 36 5 8

j

j

j

j






  
  

.                                            (6) 

Based on the above D2Q9 model, we have developed two LBEs for electrical potential 

and the charge density in [6]. In addition, the two LBEs are coupled to another LBE with a 

body force for flow motion. In the following, we first make a brief description of the LBEs. 

Then we focus on the treatment of curved boundary. 

A. Lattice Boltzmann method for electric potential and electric field 

The LBM is a method that intrinsically deals with parabolic equations with temporal 

terms. However, the Poisson’s equation is an elliptical equation, thus it is necessary to 

introduce an artificial time dependent term into Eq. (3) [10]:  

2V q
V

t







  


.                                                 (7) 

A nonzero coefficient 𝛾 (𝛾 > 0) is also introduced to control the evolution speed. Note 

that a steady solution of Eqn. (7) will also satisfy Eqn. (3) for any 𝛾. The value of 𝛾 will 

affect the numerical stability and also the computational cost of the solution procedure. Its 

optimal value depends on the specific problems under consideration. For the test cases 

presented later, an optimal value 0.3 is chosen based on some preliminary tests. 

The LBE for Eqn. (7) can be formulated as 

1
( , ) ( , ) ( , ) ( , )eq

j j j j j jg t t t g t g t g t tS

         x c x x x           (8) 

where jg  is the distribution function of electric potential and its equilibrium distribution 

eq

jg  is given by ( , )eq

j jg t Vx . The source term is defined as /j jS q  . 

The relaxation time   in Eq. (8) is computed from, 

2

3 1

2c t



  


.                                                     (9) 

The electric potential is related to its corresponding distribution functions by 

j

j

V g .                                                      (10) 

The electric field can also be directly determined from the distribution functions [11],  



Proc. 2016 Electrostatics Joint Conference 5 

2

1
j j

js

g
c t



E c .                                              (11) 

B. Lattice Boltzmann method for charge density 

Inspired by the method proposed in [12], the following LBE is used to solve the current 

continuity equation, 

1
( , ) ( , ) ( , ) ( , )eq

j j j j j

q

h t t t h t h t h t


        x c x x x ,                     (12) 

where jh  is the distribution function for charge density and its equilibrium distribution is 

given as 
2

2 2

2 4

( ) ( )( )
( , ) 1

2

j sjeq

j j

s s

K c KK
h t q

c c


      
   

  

c E u E uc E u
x .              (13) 

The relaxation time q  in Eq. (12) is defined as 

2

3 1

2
q

D

c t
  


.                                                    (14) 

The charge density is related to its corresponding distribution functions by 

j

j

q h .                                                     (15) 

In [6] we have performed the Chapman-Enskog analysis to prove that the LBEs (8) and 

(12) can recover to the macroscopic Eqns. (7) and (1) with second-order accuracy.  

C. Boundary condition treatment  

The treatment of mesoscopic boundary conditions is also a key issue in the application 

of LBM. In the two-step collision-streaming implementation style, before the streaming 

step some distribution functions from the boundary nodes or outside of the domain are 

unknown, which is required to be supplemented with the given macroscopic boundary 

conditions. For the treatment of straight line boundaries with simple geometries, please 

refer to [6]. Here we focus on the curved boundary treatment.  

bx

wx

fx

je
j

e

ffx

 
Fig. 2. Illustration of the non-equilibrium extrapolation scheme for the treatment of a curved boundary. 

As shown in Fig. 2, a part of the curved wall separates the whole region into two parts. 

The lattice node on flow region is denoted as fx  and that on the inner side of boundary is 
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denoted as bx . The small circles on the curved boundary, wx , denote the intersection 

position of the solid wall with other lattice links. The fraction   is defined as 

,f w f b   x x x x

 

 0 1   .  

The post-collision distribution functions ( , )bj
g tx  and ( , )bj

h tx  from the node bx  to a 

the node fx  are unknown. Their values are determined by idea of non-equilibrium ex-

trapolation scheme [13]. Taking ( , )bj
g tx  as the example, the unknown distribution 

function can be separated into an equilibrium component and a non-equilibrium one, 

    
( , ) ( , ) ( , )eq neq

b b bj j j
g t g t g t x x x

.
                       (16) 

The equilibrium part can be calculated as,  

( , )eq

b bj j
g t w Vx  ,                                                  (17) 

where bV  is determined by the following extrapolation [13],  

( 1) /                                                        0.75

( 1) (1 ) 2 ( 1) / (1 )      0.75

w f

b

w f w ff

V V
V

V V V V

         
 

                 
.

 .   (18) 

For the Dirichlet condition, the value of wV  is directly known. For the Neumann con-

dition, its value should be determined by extrapolation with the known values of outer 

nodes. In this study a simple second order scheme  4 / 3w f ffV V V   is used [14], and the 

more accurate schemes can be found in [15].  

The next task is to determine the non-equilibrium component ( , )neq

bj
g tx . We consider 

the following second-order approximation [13],  

( , ) ( , ) ( , )                                                             0.75

( , ) ( , ) ( , ) (1 ) ( , ) ( , )   0.75

neq eq

b f fj j j

neq eq eq

b f f ff ffj j j j j

g t g t g t

g t g t g t g t g t

    


              

x x x

x x x x x
 . (19) 

Note that for this component, there is no difference between Dirichlet and Neumann 

conditions.  

D. Calculation algorithm  

The initialization is done by setting all distribution functions with the equilibrium values 

computed with the given macroscopic initial conditions. Then a successive iteration in time 

is performed. At each time step, the LBE (8) is first solved, and then the electric field is 

obtained with Eqn. (11). After that, the LBE (12) is solved with the latest electric field to 

obtain the charge density distribution. If we also consider the flow motion, the LBE with a 

body force model should then be solved to obtain the flow velocity field, which will be 

used to determine the charge density distribution at the next time step. 

IV. NUMERICAL TESTS 

In [6], our LBM for the coupled Poisson’s equation and the charge transport equation 

has been verified with the hydrostatic regime of the injection induced electroconvection 

problem in a plate-plate configuration. For this simple geometry case, our LBM for the 
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potential and charge density shows second order accuracy in space, which is consistent 

with the accuracy order predicted by the Chapman-Enskog analysis. Here three test cases 

with a more complex geometry are considered to verify the proposed method. The first two 

cases only solve the potential equation: one without any space charge and the other one 

with constant space charge. In the third case, the electric field and space charge distribution 

are fully coupled with each other. 

O

b

a

Solution

domain

0 0,V V q q 

1

/ 0

V V

q y



  
 

Fig. 3. Modal geometry, solution domain and boundary conditions for the concentric cylinder configuration. 

 

A concentric cylinder configuration is shown in Fig. 3. The geometry of this problem is 

defined by the radii of the inner and outer cylinders, a and b. A high DC voltage (V0 > 0) is 

applied to the inner electrode while the outer electrode is grounded (V1 = 0). For the fol-

lowing case A, there is no free charge from the electrode and the charge density in the 

solution domain is set to be zero or a constant value. For case B, charges are generated at 

the inner electrode and then enter into the solution domain, thus Eqns. (1-4) are required to 

be solved simultaneously.  

A. Poisson’s equation with a wire-cylinder configuration 

For the concentric cylinder configuration, the analytical solutions of Eq. (3) are avail-

able for both zero and constant space charge cases [16]: 

2 2 2 2

0

0 0

ln ln
( ) ( ) ( )

4 4 ln ln

c cq q r b
V r b r V b a

a b 

  
     

 
,     (20) 

Where r is radial distance from the inner cylinder center. For no space charge 0cq   

and constant space charge 320μC/mcq  , with the geometry 2a = 2.77 mm, 2b = 203.2mm, 

the applied voltage V0 = 50 KV and 12

0 8.854 10 F/m     , the analytical and numer-

ical results are shown in Fig. 4. A very good agreement for both cases is readily seen. The 

numerical results are obtained with a 301×301 lattice nodes. In this case, since the radius 

ratio between the inner and outer cylinders is fairly small and at least 10 lattice cells are 

required to represent the inner cylinder, a large number of lattice nodes is required. 

However, the LBM shows its advantage of using Cartesian grids, easy boundary condition 

treatment and computational efficiency. To reduce the number of lattice nodes, the 

non-uniform LBM [17] or the multi-block technique [18] may be considered in the future 

study. 
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Fig. 4. Comparison between numerical and analytical solutions with the zero or constant space charge cases. 

B. Hydrodynamic solutions between two concentric cylinder 

In the second case, we consider a uniform distribution of constant charge density q0 

enters into the solution domain from the inner cylinder. Such a process can represent the 

charge injection at the dielectric liquid/electrode interface and the corona discharge of air 

close to the electrode. Here we consider the former case with dielectric liquids. The 

Coulomb force due to the electric field exerting on the injected space charges tends to 

destabilize the system and to induce flow motion (named the annular electroconvection). 

Because of the symmetrical characteristic of the configuration and the uniform injection, 

the problem is characterized by a linear instability bifurcation. In other words, flow motion 

arises only when the Coulomb force is sufficiently strong and overcomes the damping 

action of the viscous force. Otherwise, there is no flow motion and system is at the hy-

drostatic state. The linear stability analysis with this problem was analyzed in [19]. In a 

recent study [20], we have performed a numerical study with this problem with FVM. The 

purpose here is to verify our LBM with the hydrodynamic regime solution. 

Taking (b-a), V0 and εV0/a
2 as the scales for length, electric potential and charge density, 

Eqs. (1) and (3) can be transformed into the following dimensionless form (for clarity, the 

same symbols are used for dimensionless variables), 

2( )
q

qE D q
t


  


                (21) 

2V q                 (22) 

where D is the dimensionless diffusion coefficient. The non-dimensional boundary 

conditions for this problem are: injector 1V  , injectorq C  for inner cylinder and collector 0V  , 

0q n    for outer cylinder. The injection strength parameter C is defined 

as 0 0( ) /C q b a V  . The analytical solution of hydrostatic state with the case of D = 0 is: 

1/2
2( ) e eq r A r B



    and 
1/2

2( ) e

r e

A
E r r B

r
    ,                         (23) 

where Ae and Be are two constants depending on the ratio between the radii of cylinders 

/a b   and the injection strength C. For C = 10 and various value of  , the values of Ae 
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and Be can be found in Table 1 of [20]. 

On Fig. 5 we have displayed the profiles of charge density and the electric field strength 

in the radial direction versus the modified distance r* = (r – a) for three radius ratios 

0.1  , 0.3 and 0.5. For all cases, the computational domain is discretized with 301×301 

lattice nodes. A very good agreement between our numerical solutions and the analytical 

ones is obtained. In particular, the sharp variation of charge density in the region close to 

the inner electrode is accurately captured; see Fig.5 (a). On Fig. 6 we have presented the 

charge density iso-contours, and no unphysical-oscillation is observed.  
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(a)                                                                                  (b) 

Fig. 5. Comparison between numerical and analytical solutions of the hydrostatic regime with three radius rati-

os  : (a) charge density, and (b) the electric field in the radial direction. 

   
                      (a)                                      (b)                                    (c) 

Fig. 6. Iso-contours of the numerical solutions of charge density with three radius ratios  : (a)   =0.5, (b)   = 

0.3 and (c)   = 0.1. 

C. Annular electroconvection between two concentric cylinders 

An attractive advantage of the proposed LBM for electric field-space charge coupled 

problems is its natural coupling with the LBM for flow motion. An illustration example is 

provided in this subsection. In [22], we have coupled the LBMs for energy equation and 

flow motion based on the split-forcing model [23] and investigated the natural convection 

heat transfer problem with concentric and eccentric cylinders. The same coupling idea is 

adopted in [6]. We consider the annular electroconvection induced by unipolar injection 

from the inner electrode. This problem has been carefully investigated by the FVM in [20, 
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24]. When the Coulomb force is sufficiently strong, the hydrostatic state described by Eqns. 

(23) is no longer stable and annular electroconvection arises. In the dimensionless form, 

the Coulomb force is controlled by the electric Rayleigh number T and the ion mobility is 

expressed through the mobility number M. As shown in Fig. 7b, for the set of parameters 

(C = 10, T = 210, M = 10, D = 10-4 and  = 0.5), the flow shows a steady motion with 8 

pairs of counter-rotating vortices, which is the same number as predicted by FVM [20]. 

The results are computed with 401×401 lattice nodes. We have also compared the am-

plitude of the fluid velocities, and the maximum difference with the solutions obtained by 

FVM and LBM is less than 1%. In Fig. 7a, we observe eight regions, which are almost free 

of charges. This kind of charge void region is a very characteristic feature of Cou-

lomb-driven flows with symmetrically placed electrodes. Our LBM have accurately cap-

tured the transition from the charge covered region to the charge void region. 

        
(a)                                                                                  (b) 

Fig. 7. (a) Charge density distribution and (b) stream function for an injection induced annular electro-convection 

case. Parameters: C = 10, T = 210, M = 10, D = 10-4 and  = 0.5.  

V. CONCLUSION 

In this paper, we present a lattice Boltzmann model to solve the electric field-space 

charge coupled problems in complex geometries. Instead of solving the macroscopic 

equations, two consistent lattice Boltzmann equations are formulated for charge density 

and electric potential. The curved boundaries are treated by a non-equilibrium extrapola-

tion idea. An attractive advantage of the proposed LBM lies in its direct coupling with the 

LBM for flow motion. Three test cases with available analytical solutions were used to 

verify our method. The good agreement between numerical and analytical results demon-

strates that LBM is a promising alternative for electric field-space charge coupled prob-

lems and EHD flows in simple and complex geometries.  

In a future work, we plan to extend the physical model to take into account multi-species 

ions and non-isothermal field.  
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