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Abstract—Almost all textbooks written in the last 100 years that discuss charge decay in a 
good conductor such as a metal do so by combining the equation of continuity with Ohm’s law 
and Gauss’s law and solving the modified continuity equation to obtain an exponential decay 
of the charge density with time.  In this analysis the power of the exponent is the ratio of time 
to a characteristic time.  For a good conductor this characteristic time, referred to as the ma-
terial’s electrical relaxation time constant, is very small – typically less than 10 -18 second (cop-
per: approximately 1.5 x 10-19 s).  If free charges are uniformly placed in a good conductor, 
coulomb repulsion occurs, and the charges are repelled to the outside of the conductor.  As a 
result the charges disappear from the volume of the conductor within a few time constants. It 
is argued, for example, that if the added charges in a copper conductor move with an average 
drift velocity  u then in a relaxation time they will move a distance of approximately 10 -19 u. 
For a copper wire of 2 mm diameter, a charge located very near the center of the wire would 
need to move with a drift velocity u of approximately 1016 m/s to reach the surface of the wire 
in one time constant.  The speed of light is only 108 m/s; so, based on the above logic, charges 
would have to travel in excess of the speed of light. This paradox has caused much discussion 
in the scientific community over the ensuing years. A new analysis of the situation is presented 
in this paper which eliminates the paradox.

I.  INTRODUCTION

Ohm's law is an important and very useful law that is applied to many problems, not just 
in electronics, but also in electrostatics. In electronics Ohm's law is usually expressed in 
the circuit form V = IR  which stated when a voltage V is placed across a material of a 
specified shape a current I passes through the material, and the ratio of V/I is a constant – 
this constant being known as the resistance R of the specific shaped material.  What is so 
important about Ohm's law is that this resistance is equal to a geometry factor – defined 
by the shape of the material – divided by another constant known as the conductivity σm of 
the material. It was James Clerk Maxwell [1] who pointed out Ohm's law would have lit-
tle scientific value if a specific property of the material (i.e., its conductivity) could not be 
defined as independent of the strength of the current flowing through it and the electric 
potential at which the conductor is maintained. Maxwell noted that the material’s conduc-
tivity “depends entirely on the nature of the material  of which the conductor  is  com-
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posed.”  Thus, the constant σm is a true property of the material.
When it is desired to understand what is going on everywhere inside a material, it is 

convenient to describe what happens in a little volume element within the material and 
then to shrink the volume element to a point. Then, by summing up or integrating the in-
formation found at all these points an understanding of bulk measurable quantities can be 
obtained.  When examining an incremental volume element, the field form of Ohm's law 
becomes more useful than the circuit form.  The field form of Ohm’s law at any point in a 
metal is written as

J=m E (1)

where σm is the electrical conductivity of the metal,  J is the charge transport or current 
per unit area flowing through the point and E is the electric field at that point.   The field 
form of Ohm's law can be used to derive the circuit form of Ohm's law.  However, the 
field form can also be used to investigate what happens inside an ohmic material.  

Ohm’s law is usually assumed to be the appropriate law for charge transport in a metal 
conductor. One consequence of the field form of Ohm’s law is that in total thermodynam-
ic equilibrium the electric field everywhere inside the conductor must be zero.  This can 
be seen in (1), since if E were not zero, there would be a charge transport J; and this cur-
rent density could be used to operate a perpetual motion machine, which is thermodynam-
ically impossible. 

As a result of the electric field being zero when the conductor is in thermodynamic 
equilibrium, it is usually argued that, if some charges, all of the same polarity, are uni-
formly placed inside this isolated conductor, Coulomb’s law of repulsion will force the 
charges to move away from each other causing the charges to eventually reach the surface 
of the conductor.  

If a uniform charge density ρ is placed inside an isolated metal conductor in thermody-
namic equilibrium, the question is: how long does it take for these charges to get to the 
surface?  The answer, found in most textbooks, is obtained by substituting Ohm’s law into 
the equation of continuity 

−∂/∂ t=∇⋅J (2)

and then applying Gauss’s law 

∇⋅m E= (3)

– under the assumption of an isotropic and homogeneous permittivity where the left hand 
side of (3) becomes ∇⋅m E=m ∇⋅E –  to obtain a modified continuity equation

−∂/∂ t=m/m . (4)

This differential equation has the solution

=0 e−t / m (5) 

where ρ is the charge density in the metal conductor at any time t, while ρ0 is the charge 
density at the initial observation time t0 = 0, and 
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m=m/m (6)

is referred to as the material’s electrical relaxation time constant which is given by the ra-
tio of two constants: the material’s permittivity εm and its electrical conductivity σm.    

Copper is considered a very good conductor.  Copper has an electrical conductivity of 
5.7 x 107 S/m (siemens per meter) and a dielectric constant εrm near unity; so, its permit-
tivity m=rm0 is close to the permittivity of free space which is ε0 = 8.85 x 10-12 F/m 
(farads per meter). As a result, the electrical relaxation time for copper is very short τm ≈ 
1.5 x 10-19 s. From (5) it can be seen that in a time t = τm the charge density will be only 
about 37% of its originally observed value, in 5τm less than 1%, and in 10τm less than 
0.005% of its value.  Because the electric field must be zero in total thermodynamic equi-
librium and because like charges repel, it is reasoned that the charges, due to coulomb re-
pulsion, are forced to go to the surface of the conductor. 

A.  The Ohm's law (or charge decay) paradox
The Ohm's law paradox of classical physics is essentially an argument that says when the 
classical physics equations – Gauss's law and the equation of continuity – are used, along 
with the equation known as Ohm's law, to determine the charge decay in a metal, the re-
sult implies the charges would have to travel faster than the speed of light in order to 
reach the surface of a conductor of any reasonable size. This author is not sure when the 
paradox first appeared in the scientific literature, but the interested reader will find an ex-
cellent discussion of the problem in a series of Letters in the Proceedings of the IEEE 
during the 1970s (see below). Just the key points of the paradox are mentioned here. 

1)   The paradox 
In 1972 Mott et al. [2] argued that intuitively the charge decay equation (5) must not be 
correct since this charge decay equation is independent of the size of the conductor.  

They also reasoned that for a good conductor τm is on the order of 10-19 s; so, if most of 
the charges appeared on the surface in say 10τm ≈ 10-18 s, the charges would travel with 
speed u a distance of L = ut = 10-18 u meters.  If the charges were not allowed to move 
faster than the speed of light, which is 3 x 108 m/s, then in 10τm the charges would only 
move on the order of 10-10 m.  This is roughly on the order of atomic hydrogen's diameter. 

From the above it was concluded that for a metal of macroscopic dimensions it would 
be impossible for a charge to be removed from well within the interior of the metal unless 
a charge traveled faster than the speed of light, which – based on relativity – is a physical 
impossibility. Since the decay was based on Ohm's law, this contradiction with relativity 
became known as the Ohm's law paradox.  It is also called the charge decay paradox.

2)   Some discussion of the paradox
The paradox listed above led Mott et al. [2] to suggest that the charge decay analysis that 
gives the exponential decay as the ratio of εm/σm must be incorrect. Mott et al. went on to 
suggest that the electrical conductivity was not constant when charges are added to a met-
al conductor and that the correct analysis would require keeping the mobility constant and 
allowing the conductivity to vary in time.  

Mott et al. [2] included a diffusion term in their charge transport equation, thus negat-
ing the use of Ohm’s law whenever excess charge is placed in a conductor.  They did not 
solve their equation in general, but did present a solution when only diffusion occurred.  
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Over the next few years (1973 through 1976) a flurry of papers followed [3], [4], [5], 
[6], [7] and [8].  Each paper and the replies each paper generated added to the discussion 
in what this author can only described as a vigorous and healthy interaction on a most im-
portant and fundamental topic. With one exception [5], all this discussion appeared in the 
Proceedings of the IEEE in its Letters section; but the Letters section of this publication 
was soon thereafter abandoned – which, unfortunately, eliminated the main forum for fur-
ther discussion.  In 1976 Sarma [7] and Torrens [8] presented the last of the informational 
papers; but in the end the question still remained as to why the charge decay paradox oc-
curs in a metal (i.e., a good) conductor (see [8] p. 280 last paragraph). 

A few years later Chanian [9] brought up the controversy again.  He listed several in-
troductory textbooks written in the last half of the 20th century which combined, as dis-
cussed above, the equation of continuity, Ohm’s law and Gauss’s law to arrive at (5). He 
also argued these textbooks are all in error.  Chanian raised several points, but the major 
argument was that for such a short relaxation time Ohm's law is not valid because Ohm’s 
law is a balance between the momentum gained from the electric field and the momentum 
lost between collisions. For copper the collision time is about 2 x 10-14 s; so a time at least 
that long is required for this balance to occur. 

Chanian attempted to put the question to rest by arguing that charge decay was actually 
based on the slowest time of a multi-step process.  First he noted Saslow and Wilkinson's 
[10] suggestion that free-electron collisions caused these charges to create damped plas-
ma oscillations, and the charges were removed in approximately twice the collision time 
(about 4 x 10-14  s for copper). Chanian then argued that there were other longer-lasting, 
transient phenomena in the conductor. He examined these transients (after  ρ = 0), and 
found the electric and magnetic fields in the bulk conductor decayed based on diffusion 
equations. He then looked at the relaxation time for the surging surface currents at the 
conductor’s surface and argued that the true relaxation time is the longer of the three 
times (the time to move charges to the surface, the time to diffuse the fields out of the vol-
ume and the time for the surface currents to relax).  While such calculations are interest-
ing, they still maintain the same paradox.  Namely, in Chanian’s method the charges leave 
the volume of the conductor in a short time (twice the collision time) so that it would still 
appear that the charges at the center of the conductor must move faster than the speed of 
light to reach the surface in a few relaxation times and the paradox remained. 

 Almost a decade ago, Seaver [11] developed the charge flux equation in a general ma-
terial based on a contiguous collision averaging method.  Under the conditions that the 
material is linear, isotropic, homogeneous, and non-flowing (like a solid), this equation 
reduced to an equation that looks just like Ohm’s Law.  Later Seaver  [12] applied the 
charge flux equation to a solid material that had uniform charge placed within it, and he 
developed a single charge decay equation valid for any solid whether it be a conductor, a 
semiconductor or an insulator.  However, his equation also contained the exponential de-
cay term and is therefore subject to the same paradox. 

It is the purpose of this paper to reexamine the paradox.  It will be shown that a “real” 
perturbation charge in a metal can only be a free-electron, and it does not have to travel to 
the surface in order for charge decay to occur. Furthermore, it will be shown that a relax-
ation time on the order of 10-18 s is reasonable for good conductors and that this time does 
not require a perturbing charge to travel at a speed anywhere near the speed of light.



Proc. ESA Annual Meeting on Electrostatics 2008, Paper D4                                5 

Most of the discussion in this paper is very general, but at periodic intervals a 2 mm di-
ameter copper wire of very long extent will be used as an example for calculation purpos-
es. This example is chosen in order to show the discussion in this paper is relevant to a 
typical conductor found in a common geometry. 

II.  DISCUSSION

The fact that the classical Ohm's law paradox has remained in the technical literature for 
so many years suggests that understanding how to unravel the paradox is not obvious, 
even if the answer – once seen –  may seem trivial. Therefore, it seems appropriate to 
step back and take a look at all the basic physics involved in Ohm's law and determine if 
some things might have been overlooked in the discussion of charge relaxation. As will 
be shown in this paper (and marked by ►) there are several points that needed discussion 
in order to understand what really occurs during electrical charge relaxation in a metal.  

Many calculations will be done in this paper, and some important constants used in 
these calculations are given in Table 1.

Table 1: SOME USEFUL FUNDAMENTAL CONSTANTS

Name Value

Avogadro’s Number: AN 6.022 x 1023 molecules/mol

Boltzmann's constant: k 1.38 x 10-23 J/K

Electron charge: seq0 = - q0 - 1.6 x 10-19 C

Electron mass: me 9.11 x 10-31 kg

Classical electron radius: re 2.82 x 10-15 m

In order to look at the basic physics in Ohm's law requires an understanding of charge 
flux. Once charge flux is understood, it becomes possible to understand when Ohm’s law 
is valid and when it is not valid. Once Ohm's law is understood, questions can be asked 
and answered regarding what happens when charge is inserted into a conductor.  For ex-
ample, what type or types of charge and how much charge can be inserted in a conductor 
and still have the conductor be the original conductor?  Once these questions have been 
answered the paradox question can be asked.  Namely, can a charge placed deep within 
the interior of a good conductor take part in electrical relaxation within about 10-18 s and 
not travel faster than the speed of light? If this can happen, then the Ohm's law solution 
that gives charge decay as (5) is correct; otherwise, the paradox remains. 

To obtain the basic understanding of Ohm's law, to ask and answer the relevant ques-
tions and to arrive at a clear and crisp understanding of charge decay which will clear up 
the Ohm's law paradox requires a trip through the several subsections of this paper.  

A.  Charge Flux
Ohm's law (1) is nothing more than a statement about charge flux. Ohm's law simply 
states: the charge flux or current density J is proportional to, and in the direction of, the 
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electric field E and the electrical conductivity σm is the constant of proportionality.  
1)   General charge flux equation

As already mentioned, Seaver  [11] developed the charge flux equation for any charged 
species; say the ith species, in a general material (solid, liquid or gas). In the derivation he 
assumed any rate of generation RGENi of the species was equal to the rate of recombina-
tion RRECi of the species and that magnetic field effects could be ignored.  He found the 
charge flux of this ith species was

J i=i vd0 i E−Di ∇ i−G i i ∇ T . (7)

Here the current per unit area or charge flux Ji at any point in the material is dependent 
on the charge density ρi, the electrical conductivity σi, the electric field E and tempera-
ture T at that point.  For liquids and gases the material might have a bulk material drift 
velocity vd0, but for a stationary metal like a copper wire –  which is the example metal 
being considered here – this material drift is zero.   

In (7) charge density ρi, conductivity σi, diffusion coefficient Di and thermophoresis co-
efficient Gi for the ith species are given, respectively, by

i=si qi ni , (8)

i=s i
2 qi n i bi

, (9)

Di=k T bi /qi ,
(10)

Gi=k bi /q i ,
(11)

where the mobility bi of the ith species is given by

bi=q ici/ mi . (12)

Here, qi is the amount (but not the sign) of charge of the species of mass mi which under-
goes collisions with an average collision time τci.  This charge of the species is given by

q i=Z i q0 , (13)
where q0 = 1.6 x 10-19 C is the fundamental charge of a proton or positron and is a posi-
tive number, Zi is the number of fundamental charges on the ith species and si is the sign 
of the charge; si = 1 if the charge is positive, and si = -1 if the charge is negative.

If more than one species of charge is present in the material, the total charge flux is giv-
en by the vector sum of the individual charge fluxes as

J=∑
i

J i . (14)

When (14) is applied to (7) the total charge flux in the material is
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J=vd0 E−∑
i

Di ∇ i−∇ T ∑
i

Gi i
,

(15)

where the total charge density is

=∑
i

i
,

(16)

and the total electrical conductivity is

=∑
i

 i
.

(17)

Clearly, (15) is not Ohm's law; but as Maxwell [1] noted, Ohm's law is only applicable to 
homogeneous conductors.   Hence,  if  the material  is  a  homogeneous solid  conductor, 
there can be no charge gradients,  ∇ρi = 0, and no thermal gradient, ∇Τ = 0, and no mate-
rial flow, vd0 = 0, and for these (homogeneous conductor) restrictions (15) reduces to 

J= E . (18)

Notice that (18) looks like Ohm’s law (1) and (18) can be used as Ohm’s Law if, and 
only if, it can be shown that σ  in (18) is a constant; i.e., if, and only if: σ  = σm.  

Finally, for a homogeneous material only (8), (9), (12), (13) and (16) are needed to de-
fine the general conductivity (17) and once (17) is known the charge flux (18) of the ho-
mogeneous conductor can be computed.

2)   Charge flux, Ohm’s law and conductivity
In the previous section it was shown that the general charge flux equation (15) reduces to 
(18) for a homogeneous material. Now the goal is to see if the conductivity as given by 
(17) is a constant so that (18) can be used as Ohm's law for a metal conductor.

An atom can be considered as a group of electrons surrounding a positive ion core. In a 
metal each atom has one electron that is loosely bound to its ion core.  This electron can 
move freely when acted on by a force and is called a free-electron.  In a metal it is esti-
mated that there is roughly one free-electron associated with each atom.  As a result, in a 
metal  there  are  two charge  species,  the free-electron species  and  the atom's ion core 
species that remains when free-electrons move from their atoms. 

Although the ion cores can vibrate around their equilibrium positions, they are locked 
into the lattice structure that makes up the solid; and – when acted on by an external force 
– they cannot be dislocated or moved from their central positions. Thus, the mobility bi of 
the ion core species is zero and by (9) the conductivity of the species is zero.  

On the other hand, the free-electrons can be moved from their positions when acted on 
by an external force; so, they do have mobility and (9) – with the aide of (8), (12) and 
(13) – shows the conductivity of the free-electrons is finite and depends on the number 
density ni = ne of free-electrons in the material.

Since, as noted above, the conductivity of the ion species is zero, from (17) these two 
conductivities add to give the total conductivity of the metal as 

=se
2 q0 ne be ≡m (19)
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where the subscript e refers to the free-electron species; and the subscript e is also a re-
minder that the metal’s conductivity is due entirely to the free-electrons in the metal. 

A specific metal composition has atoms of a specific atom number density na and, if na 

= ne, it also has that same specific free-electron number density ne. From (19) it can be 
seen that the mobility be and the number density ne of the free-electrons are what deter-
mine the value of the metal's conductivity (19); and, as a result, if the mobility and num-
ber density are constant then σ is a constant and can be written as σm. 

So, in summary, for a metal (18) and (19) combine to give Ohm’s law (1) under the as-
sumptions that the mobility be and number density ne are both constants.  Stated another 
way, it can be concluded that: 

►i)  Ohm’s law (1) is valid provided the free-electron mobility be and the free-elec-
tron number density ne are both constant which makes a constant conductivity.

Is the mobility a constant?  Measurements using the circuit form of Ohm's law always 
show that σ = σm is a constant; so, clearly from the measurements one can conclude this to 
be true.  However, later in this paper, it will be shown that, if the measurements were to 
have been made at a very much higher electric field (i.e., a very much higher potential dif-
ference across the metal), the mobility would no longer be constant. It will also be shown 
that just such a high field will occur if the initial perturbing charge density ρ0 in (5) is too 
high.  Furthermore, it will be shown that this restriction on the perturbing charge density 
ρ0 can be calculated for any metal but is dependent on the size of the conductor.

B.    Adding Perturbing Charge in a Metal
In the mind's-eye laboratory adding charge to a metal is just a simple thought experiment. 
But even in this virtual laboratory of unlimited resources some additions are not allowed. 

1)  Restrictions on the added charge
When a charge density ρ0 is added into a good conductor such as a metal  (5) indicates 
this charge density decays exponentially with time and with a time constant on the order 
of 10-18 s which some have intuitively argued is too quick for relaxation to occur. 

If no thought is given to the addition of ρ0, one might assume the added or perturbing 
charge density can be either positive or negative. 

However, with some thought it can be realized that, for an isolated conductor, it is not 
possible to remove electrons from the conductor and use Ohm's law. The reason is, when 
some of the free-electrons are removed, this changes ne, which, according to (19) changes 
σm, i.e.,  σm is no longer its original constant. As a result, the metal's composition is no 
longer its original composition and Ohm's law cannot be used.  Hence, it is not possible to 
place positive charge in an isolated conductor by removing electrons.  

Likewise, if atoms or atomic ions of any kind are inserted into the space of existing 
atoms in the conductor, Ohm's law is violated because the material composition has per-
manently changed which will also change σm. For example, if the perturbing atoms are of 
slightly different size, then, even if each has one free-electron, the charge density of the 
free-electrons will change and σm will change. 

Some might suggest putting in positrons to give  ρ0 a positive sign; but, as soon as a 
positron encounters an electron, both the positron and electron would be annihilated, and 
the loss of the electron would change ne which changes σm. 

So the only thing that is left to do is to place more free-electrons into the metal.  In this 
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situation the original composition of the species (i.e., the free-electrons and their ion core 
atoms) that made up the metal are still present in the proper amounts so that the metal still 
contains all the free-electrons that made σm a constant.  However, it is not allowed to just 
stick free-electrons at some location and watch the decay with time because one of the re-
quirements of an ohmic material is that it must be homogeneous, which requires ∇ρp = 0. 
Hence, it can be concluded that:

►ii)  The two restrictions on the added or perturbing charges are: 1) they must be 
free-electrons, and, 2) they must be added uniformly throughout the conductor. 

Essentially, the above conclusion is based on the above discussion which found that it is 
impossible to add positive charge or atomic ions of any kind to an isolated ohmic con-
ductor and have it be the same ohmic material it was before the addition. 

2)  Effect of the added charge on conductivity
When charge is uniformly added to any material (good or poor conductors), the charge 
flux equation must be reexamined.  Uniform addition of charge means no gradients; so, 
(15) still reduces to (18). When charge is added, the procedure to determine the conduc-
tivity is the same as discussed previously, except now there is a third species present; i.e., 
the added or perturbing species. Without, for the moment, defining what that species is 
(although in the previous section it was shown for a metal it is free-electrons), (17) indi-
cates that the perturbing species' conductivity must be included and (19) is replaced by 

=m p (20)

where the subscript p refers to the species as the perturbing species.  It is clear that the 
true charge flux equation for a uniformly placed perturbing species is (18) with the con-
ductivity given by (20) and not (19).  As a result, it can be concluded here that in general 
Ohm's Law is not the appropriate equation to use when perturbing charges are present.  

However, if it can be shown that the perturbing conductivity σp is very much less than 
the material’s conductivity σm, then an argument can be made that (20) is, for all practical 
purposes, a constant and Ohm's law can still be used. It will be shown later that, to insure 
the ohmic behavior of a metal conductor, the requirement of σp0 << σm, must always exist. 

3)   Adding charge to a general material and to a metal
 So what must be done to determine the charge decay in a general ohmic material due to a 
perturbing species?  The answer is the equation of continuity (2) and Gauss's law (3) 
must be combined with the constitutive equation given by (18) and with the conductivity 
given by (20) to determine charge decay.  This calculation has already been done for a 
general non-flowing material (solid or a stagnant high viscosity liquid or gas) composed 
of a single conducting species to which a second conducting species is added as an initial 
perturbation charge density ρp0 and the result is [12]

 pt =
 p0e−t /m

1
m

 p

[1−e−t / m]
(21)

where a perturbation time constant is defined as
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 p=
m

 s p  p0b p

=
m

s p
2 q p n p0 b p

=
m

 p0
. (22)

For the special case of a metal conductor where free-electrons are the only means of con-
duction (21) reduces to

 pt =
 p0 e−t /m

1
n p 0

ne
[1−e−t /m ]

(23)

and, if n p 0≪ne , i.e., if the initial perturbing free-electron density is much less than 
the normal free-electron density of the material, then (23) reduces to (5).  

So, where is the direction of this analysis heading? It will be shown later that for a met-
al to be defined as ohmic the assumption n p 0≪ne will always be true because there is 
a limit to the magnitude of the perturbing charge density that can be added to a metal, 
above which further addition will alter the metal's conductivity by altering its free-elec-
tron mobility. In other words, if the initial perturbing charge density is too high, the con-
ductivity is no longer a constant; and Ohm's law is no longer valid. On the other hand, if 
the initial perturbing charge density is below a certain amount (the amount depends on the 
size of the conductor), the conductivity is a constant, Ohm's law remains valid and charge 
decay defined by (23) reduces to the charge decay defined by (5). So, it may take some 
further discussion to get there, but one goal is to show n p 0≪ne is always true for a 
metal, and that will be the defining argument in showing (5) is the correct charge decay 
equation for a metal. Then the Ohm's law paradox regarding the speed of light can be ad-
dressed without further questioning the appropriateness of either (1) or (5).

C.   Free-electron Number and Charge Density
Table 2 lists useful information on copper. The upper part of Table 2 listed several of the 
properties of copper down through and including its measured electrical  conductivity. 
From this information the remaining information in Table 2 will be calculated.
For a charge-neutral metal with a mass density ρD and a gram-molecular-weight MA the 
atom number density is given by

na=AN D/M A (24)

where  AN is Avogadro’s number as given in  Table 1. For the density and molecular-
weight of copper as given in Table 2, copper's atom number density, using (24), is calcu-
lated to be 8.46 x 1028 atoms/m3.  Most metals have an atom number density within two 
orders of magnitude below this range.

If for any reason some of the free-electrons are not free, then the number density of the 
free-electrons will only be a fraction of the atom number density; namely

f e=ne /na . (25) 
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Table 2: MEASURED AND CALCULATED PROPERTIES OF COPPER

Name Value Method

Mass density: ρD 8930 kg/m3 Periodic Table

Molecular weight: MA 63.55 x 10-3 
  kg/mol Periodic Table

Electrical conductivity: σm 5.7 x 107 S/m Measured via. Ohm's law

Electrical relaxation time: τm ≈ 1.5 x 10-19 s From (6)

Atom number density: na 8.46 x 1028 m-3 From (24)

Free-electron number density: ne 8.46 x 1028 m-3 From (25) with fe = 1

Ion core number density: na+ 8.46 x 1028 m-3 Charge neutrality ne = na+

Electron mobility: be 4.24 x 10-3 m2/V∙s From (19) 

Electron collision time: τce 2.4 x 10-14s From (12)

Electron thermal speed: v the
1.06 x 105 m/s From (42) at 293 K

Ohm's law max drift velocity: v d e
1.15 x 104 m/s From (53) at 293 K

Ohm's law copper max-field: Emax 2.7 MV/m  From (19), (42), (54)

Max free-electron movement:  δr 1.78 x 10-15 m From (65) r = rw = 1 mm

However, in a metal it is usually assumed that there is one free electron per atom. So, 
with the assumption fe = 1, (25) gives the free-electron number density for copper as 8.4 x 
1028 charges/m3. This means there are about 4390 charges/μm or that the charges are sepa-
rated by about 2.3 x 10-4 μm = 0.23 nm = 2.3  Å from each other. In fact, the atoms in 
most metals are separated from each other by only a few angstroms. 

From (8) the free-electron charge density is seq0ne  = -q0ne which for copper is -1.35 x 
1010 C/m3. This result does not mean there is a large charge in the wire. On the contrary 
charge-neutrality exists because each free-electron is associated with a metal ion in the 
wire. Charge neutrality will always require the positive ion core density na+ to be equal to 
the  free-electron  number  density  when in  total  thermodynamic  equilibrium.  In  other 
words, ne = na+  when in total thermodynamic equilibrium.  As a result, the summation as 
defined by (16) always makes for a neutral metal wire.  

Now for a very important point. Even when thermodynamic equilibrium is abandoned, 
as for example when a current is made to flow, charge-neutrality remains in an ohmic 
conductor such as a metal wire. When a current is made to flow, a free-electron moves 
from one ion core to the next until eventually it moves out of the wire. However, since 
current-in equals current-out, for each free-electron that leaves the wire, a new free-elec-
tron enters (otherwise there would be a ∇ρe and the wire would no longer be ohmic). At 
any given instance a given free-electron that entered can be associated with one of the 
atomic ions. When the current is made to stop, there will still be one free-electron associ-
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ated with each atomic ion – the sum of which makes up a neutral material. However, an 
important conclusion can be drawn from this little discussion. Namely, from this intuitive 
understanding of charge motion in a wire it can be concluded that: 

►iii) When free-electrons are made to move in a metal, and after which thermody-
namic equilibrium is established, charge neutrality of the atoms exists, but not 
necessarily with a specific atomic ion being associated with the same free-elec-
tron it had been associated with prior to the cause of free-electron motion.

The above conclusion will be very important in understanding how the electrical relax-
ation time in a metal can be so fast and why the speed of light is never exceeded.

D.   Gauss’s Law For a Metal Wire
When considering charge decay in a metal it is always helpful to have a picture in one's 
mind as to what the system might look like.  Although the equation of charge decay (5) 
should be good for any shaped metal, calculations in this paper will use a copper metal 
wire as an example situation. The metal wire is a long cylinder of some specified radius 
and length.  In order not to worry about charges moving in the z direction, let the wire be 
of such a significantly long length that the perturbing free-electron charges move essen-
tially radially outward to the surface.   

Consider, as shown in Fig. 1a, a Gaussian surface surrounding the center of a long con-
ductor wire.  If there is a uniform distribution of charge within the conductor, then the 
Gaussian surface will surround an amount of charge ΔqG as depicted in Fig. 1b. Gauss’s 
law gives the amount of the charge enclosed within any incremental length dz as

qG=m E r 2 r dz (26) 

where r is the radius of the Gaussian surface and Er is the radial field at the Gaussian sur-
face – Fig. 1a. This radial field Er causes charges outside the Gaussian surface to move ra-
dially outward giving rise to a outward charge flow towards the surface of the wire.  

So every unit area – each unit area surrounding a point on the Gaussian surface – will 
experience a current per unit area Jr flowing outward. This is depicted in Fig. 1b.

The volume charge density ρG within this Gaussian surface is by definition the amount 

Fig. 1: Diagram of a wire with an incremental Gaussian surface drawn 
within the wire which encloses an amount of uniform charge  ΔqG such 
that it has volume charge density ρG.
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of incremental charge within the Gaussian volume divided by this incremental volume, or

G=qG/ r 2dz  (27) 

so, equating the amount of Gaussian charge  ΔqG within the surface based on (26) and 
(27) Gr 2dz=m Er 2 r dz gives the charge density within the Gaussian surface as 

 G=2m E r /r . (28)

Hence, from (28) the electric field at Gaussian surface is

E r=G r /2m (29)

and this radial E-field increases linearly with the radius of the Gaussian surface.  This re-
sult will be used later to determine how much charge can be placed in a conductor before 
the E-field becomes so large that the free-electron mobility becomes dependent upon the 
magnitude of the E-field. But first, to understand how the E-field affects mobility requires 
an understanding of how the mobility and other important terms are obtained from colli-
sion averaging.

E.   Averages
In order to proceed further in the understanding of when Ohm's law can and cannot be 
used, it is necessary to look more closely at why the electrical conductivity of a metal is a 
constant. The answer will be that the measurement of the electrical conductivity is done 
with an electric field that keeps the drift speed of the free-electrons quite low compared to 
the thermal speed of the free-electrons, and this in turn keeps the average speed of the 
free-electrons a constant. To understand this in detail, it is important to understand the 
calculation of averages.  

Once it is realized that the average speed of the free-electrons is a constant – indepen-
dent of the E-field when in the presence of a low electric field – the question can then be 
asked as to how large an electric field is too large.  In studying charge decay, it is the per-
turbing charges  placed  inside the metal  conductor  that  create  the electric  field  which 
drives free-electron charges  to the surface.   The question that  will be asked,  and an-
swered, is how much charge can be put into a metal conductor before the average speed 
of the free-electrons start to be dependent on the perturbing charges. Once this occurs the 
electrical conductivity will no longer be constant, and the exponential charge decay given 
by (5) or (21) will no longer be valid. So, conversely, there is a maximum charge density 
limit restriction that must be placed on the perturbing charge density ρ0 in (5) – which is 
ρp0 in (21) – above which Ohm's law is invalid and cannot be used in deriving (5) or (21).

1)   General time average
In the appendix of [11] it was shown that, if t0 is chosen as the zero of time (t0 = 0) – that 
time being the end of the last collision and hence the beginning of time for a collision un-
der study – the time average value of any species function Y over one collision by all the 

particles of that species is 〈Y 〉i=ci
−1∫

0

∞

Y e− t /ci dt . However, ∫
0

∞

tn e−t /ci dt=n!ci
n1 so
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〈 tn 〉=ci
−1∫

0

∞

t n e−t /ci dt=n!ci
n . (30)

With (30) it is relatively simple to obtain averages on a particular charged species dur-
ing a contiguous collision averaging event.

2)   Equations of motion for a free-electron
The equations of motion for a free-electron in the presence of an electric field E can be 
written down. If gravity can be ignored and if one direction of motion is taken to be in 
the direction of the electric field E, the equation of motion in the direction of E is

FE=me d vE /dt=se q0 E . (31)

Assume E may vary with position and time but is constant within the incremental region 
of this free-electron's travel during the short time t ≤ tce with tce being the time at which 
the free-electron will experience a collision.  For this constant electric field, integrating 
(31) gives the velocity in the E-field direction at any time t before a collision as

v E=v E 0 se q0/me E t (32)

where vE0 is the velocity at the end of the previous collision (which is also the velocity of 
the start of the present collision under study). However, if – for example – the electric 
field is taken to be in the positive x-direction, this velocity can be written as

d x /dt=vE 0 se q0/meE t (33)

which after integration gives the position of the free-electron (relative to a fixed reference 
position x0 at the start of the upcoming collision) as

x=x0vE 0 t[ se q0 /2me]E t 2 (34)

3)   Drift velocity of electrons
The average velocity of the electrons in the direction of the electric field can be deter-
mined by averaging the motion of all the free-electrons during a single collision. Time 
averaging (32) over all the free-electrons during a single collision gives

〈vE 〉=〈v E 0〉se q0 /meE〈 t 〉 (35)

But the averaging over vE0 will be zero since the initial velocity is as likely to be in the 
negative direction as it will be in the positive direction. So (30) into (35) gives

vd =〈vE 〉= se q0/meEce . (36)

as the drift velocity of the electrons due to the electric field.  It can be seen that (36) is in 
agreement with the basic definition of the mobility for free-electrons as expressed by the 
combination of (12) and (13); namely,

vd =se be E (37)
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which, since se = -1, shows the drift velocity of the free-electrons is opposite to the direc-
tion of – but proportional to – the electric field E, with the mobility be of the free-elec-
trons being the constant of proportionality.  Later it will be shown that above a certain 
electric field the collision time becomes dependent on the electric field so the mobility is 
no longer constant and becomes a function of the electric field.

4)   Average speed of electrons
From (32) the square of the speed of a free-electron in the direction of the electric field is

v E
2 =v0 E

2 2v0 E se q0 / meEt[ se q0/meE ]2t 2 (38)

and taking the average for all free-electrons over one collision in the field direction al-
lows (38) to be written as the mean square speed 

〈vE
2 〉=〈v0E

2 〉2  se q0 /meE 〈v0E t 〉[ se q0/me E ]2 〈t 2〉 . (39)

Here again the averaging over v0E t in (39) will be zero since the initial velocity will as 
likely be in the negative direction as it will be in the positive direction for any free-elec-
tron. Therefore, with (30) into (39) the mean square speed in the field direction becomes

〈vE
2 〉=〈v0E

2 〉[ se q0 /meE ]2 2ce
2 . (40)

By definition the mean square speed in three orthogonal coordinates is simply the sum of 
the squares in each of the coordinates.  Without loss of generality the square of the speed 
of a free-electron in a rectangular coordinate system is given by v 2=v x

2v y
2v z

2 ; so, 
the average over all free-electrons during one collision will be given by the mean square 
speed 〈v2〉=〈v x

2〉〈v y
2 〉〈v z

2〉 . Now, if the x-direction is taken to be that of the electric 
field,  then  using  (40)  as  the  x-direction  the  mean  square  of  the  speed  is  given  by

〈v2〉=〈v0x
2 〉[ se q0/me E ]2 2ce

2 〈v 0 y
2 〉〈v0 z

2 〉 .  However,  from the Maxwellian dis-
tribution of speeds in classical physics, when no E field is present, this mean square speed 
is [13] 〈v2〉E=0=〈v0 x

2 〉〈v0 y
2 〉〈v0 z

2 〉=3 kT /me so the mean square speed with the field 
is 〈v2〉=3 kT /me [se q0/me E ]2 2ce

2 . For a Maxwellian distribution of speeds, and 
as  discussed  in  [13],  the  average  speed 〈v〉 is  related  to 〈v2〉 and  given  by

〈v〉=8 /3〈v2〉 .  Hence 〈v〉=8kT /me 16/3[se q0 /me E ]2ce
2 is  the 

average speed of the free-electrons. Thus, the average speed of the free-electrons can be 
written as

〈v 〉=v th
2 16/3vd

2 (41)

where 

v th=8kT/ me  (42)

is the thermal speed of  the free-electrons and  vd is the drift speed of the free-electrons 
given by (36) or (37).  Later it will be shown that to have a constant mobility and a con-
stant electrical conductivity requires 〈v〉 to be constant, and hence (41) requires vd << 
vth. But from (36) or (37) this restricts the allowable maximum E-field.
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5)   Distance traveled per collision in direction of E-field 
Averaging (34) gives the distance traveled in the field direction due to a collision as

E=〈x−x0〉=〈v E0t 〉[se q0/2 me]E〈 t2〉 .  Here again, since the initial velocity will 
as likely be in the negative direction as it will be in the positive direction at any time t, 
the  averaging  over  vE0 t will  be  zero   With  the  aid  of  (30)  this  averaging  gives

E=[se q0/2 me]E2ce
2 =[ se q0 ce/me ] Ece which can also be written as

E=ce vd (43)

Note: This is not the mean free path.  This is just the average distance traveled in the 
field direction during the average collision time. 

6)   Mean free path
In  the contiguous collision averaging method all  the particles  of  a  given species  are 
watched during one collision and the average values of their motions are calculated. If 
the average speed 〈v〉i of the ith species is multiplied by the average collision time τci 

of the species,  it gives the average distance  λi traveled in a collision. This average is 
called the mean free path λi of the species.

The mean free path should be only dependent on the structure of the material and the 
structure of the species.  If ra is the radius of an atom and ri is the radius of the colliding 
ionic species under study, then for atoms of fixed centers, a particle of the ith species trav-
eling at an average speed 〈v〉i will move a distance dλ in time dt.  

For hard sphere collisions, if an ith species particle approaches an atom along a line par-
allel to a center-line which goes through the center of the atom, the ith species particle will 
collide with the atom provided the ith species particle is located within a radius of ra + ri 

from this center-line.  The circular area over which a collision will occur is given by [13]

Qi= rar i
2 (44)

and is referred to by various names the most common being the hard sphere collision-
cross-section area, the cross-section for momentum transfer or the cross-section of inter-
action .  The average particle of the ith species will travel a distance λi in a time τi and will 
sweep out a volume of i Q i in time τci. In other words, it will sweep out a volume on a 
per average collision time basis τci of i Q i/ci=〈v〉iQ i .

 Let the atom that acts as the scattering site in a collision occupy the volume V dur-
ing collision time τi. Then, for a general material containing N atoms in its volume VN, this 
collision volume can be written as V =N V /N =V N / N =1/ N /V N =1/na where na is 
the  number  density  of  the  atoms.  Thus,  the  volume  swept  out  per  collision  is

V /i=1 /na i . But this is the same as the volume swept out in the collision time τi 

and given above by i Q i/ci=〈v〉iQ i . Equating these two volumes per collision time 
gives i Q i/ci=〈v〉iQ i=1 /n aci and solving for the mean free path gives 

i=〈v 〉ici=1 /Qi na (45)

or conversely, solving for the collision time gives
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ci=i / 〈v 〉i=1/〈v 〉i Qi na (46)

If free-electrons are the colliding species, then re << ra and Qi reduces to πra
2.

F.   Calculations
Now that  important  averages  have  been  done  for  the  contiguous  collision  averaging 
method and, most importantly, now that the average speed (41) is known, it is possible to 
get a good understanding as to the physics involved in charge decay. Again, to make the 
problem real, a copper wire will be used as the example.  The circuit form of Ohm's law 
has been used by others in the past to measure the electrical  conductivity of copper. 
Knowing the conductivity and the charge density of the free-electrons in copper allows 
the electrical mobility of the free-electrons to be calculated.  Then, knowing the mobility, 
the average collision time of the free-electrons can be calculated.

1)   Mobility of free electrons in copper
From (19) and (25) the metal's conductivity is m=se

2 q0 ne be=q 0 f e nabe and is a 
measured quantity whose value for copper is given in Table 2. On the other hand, the mo-
bility is a deduced quantity based on the measured conductivity and the assumption in 
(25) that for metals (fe = 1). Assuming fe = 1, and for the value of q0 in Table 1 and the 
atom number density in Table 2, the mobility of the free-electrons in copper is 

be=m / q0 ne=4.21 x 10−3 m2/Vs .
2)   Electron collision time in copper

With the the above calculated mobility the collision time for electrons in copper from 
(12) is ce=be me /q0=2.4 x 10−14s. Since the electrical relaxation time τm of copper is 
1.5 x 10-19 sec, and is orders of magnitude less that the collision time, it is clear that the 
controlling interest in electrical relaxation is not collisions but rather the electric field E 
supplied by the perturbing charges. This electric field is due entirely to coulomb repul-
sion. However, it should now be clear from (32) and the discussion of averages that the 
electric  field  supplied  by  the  perturbing  charges  not  only  influences  the  perturbing 
charges, it also influence all the free-electrons normally found in the metal. 

3)   When mobility is and is not constant
The mobility of any charge species is a constant provided all values in (12) are constants. 
This means the mobility of the species will be a constant provided the collision time τci of 
the species is a constant.  But the collision time  τci is related to the mean free path  λi 

through (45) and since λi is a constant, the mobility of any species can be written as

bi=q i /mi Qi na 〈v 〉i  (47)

or in terms of the thermal and drift speed as

bi=q i /mi Qi na v th i

2 16/ 3vd i

2  . (48)

As long as the species' drift speed (see (37); replace subscript e by i in its development) 

vd i
=si bi E (49)
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is very much less than the species' thermal speed

v th i
=8kT/  mi , (50)

then, with the restriction v d i
<< v thi

,  the mobility of the species reduces to

bi=q i /mi Qi na v th i
    bi is a constant (vdi << vth ) (51) 

On the other hand, if the electric field is such that the drift speed becomes a reasonable 
portion of the thermal speed both v thi

and vd i
must be retained and the mobility (48) 

written  in  terms  of  the  E-field  by  using  (49)  becomes
bi=qi/ mi Qi na v thi

2 16/ 3bi
2 E2 . Taking the square of both sides of this equation 

and then factoring out the mobility leaves a quadratic in bi
2 with the solution

bi= 1[43/3][q i/ miQ i na ]2
[E 2/v thi

4 ]−1
[242 E 2/3]

v thi

2 . (52)

For a small electric field the mobility (52) reduces to a constant as given by (51).
Thus, for a general material (solid, liquid or gas) to be ohmic, it must have a well de-

fined and constant conductivity.  Its conductivity is given by (17) where each species has 
a conductivity σi given by (9); and, as can be seen in (9), the species conductivity depends 
on its species mobility bi. As a result, for a general material to have a constant electrical 
conductivity requires each species to have a constant mobility. Finally, a  constant mobili-
ty is only achieved  with the restriction v d i

<< v thi
for each species; but, if this re-

striction is met, the mobility of each species will be given by (51). For a metal conductor 
the free-electrons are the one and only mobile species; so, the restriction simply becomes 
a restriction on the free-electrons v d e

<< v the
.

4)   Ohm's law drift speed restriction in  metals
As discussed in the last section, the mobility of a species deviates from being constant 
when the average velocity of the species deviates from its thermal velocity. This devia-
tion only occurs when an electric field is so strong as to cause the species drift velocity to 
become more than insignificant when compared to the species thermal velocity.

It is possible to set an arbitrary limit of say a 1% variation in mobility as the point 
where a further increase would mark the mobility as having changed too much to consider 
it a constant. From (47) it can be seen that a 1% deviation from a constant value would be

〈v〉i≤1.01 v thi
or 〈v〉i

2≤1.012v thi

2 .  With  (41)  this  occurs  when
v thi

2 16/ 3v d i

2 =1.012 v thi

2 which  can  be  solved  for  the  maximum drift  speed  as
vd i

2 =31.012−1/16v thi

2 =1.18 x 10−2v thi

2 or

vd i
=0.109 v thi

  [Max v d i
– ohmic restriction]. (53)

From (42) the thermal speed of electrons is v the
= 1.06 x 105 m/s at 293 K. So (53) 

gives a maximum electron drift velocity v d e
of 1.15 x 104 m/s at 293 K. In a metal only 
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free-electrons contribute to conduction; so, for any metal, Ohm's law will no longer be 
valid above this drift velocity. 

5)   Ohm's law E-field restriction in metals
From (37) and (53) the magnitude of the electric field restriction on any species is

 ∣E∣≤∣0.109 v thi
/ si bi∣      [Max E-field – ohmic restriction]. (54)

In a metal only electrons are free to move, so only electrons need to be considered in the 
E-field restriction. Using (19) to calculate the mobility of copper from its measured con-
ductivity, and (42) to calculate the thermal speed of electrons and substituting these val-
ues into (54) gives the E-field restriction for copper as 2.7 MV/m at 293 K.  

If a metal other than copper is considered, then the mobility of the metal would be ob-
tained from the metal's measured conductivity.  Hence, the E-field restriction (54) is de-
pendent on the metal.

From the above it can be concluded that:
►iv) The E-field in a metal conductor must be kept below a value of about 10% of 

the ratio of the thermal speed of the free-electrons divided by the mobility of the 
free-electrons, the mobility having been computed from the measured conduc-
tivity of the metal.  This restriction is independent of the size or shape of the 
conductor. If E-field restriction (54) cannot be met, Ohm's law cannot be used.

It is interesting to note that this E-field restriction for copper is also close in magnitude 
to where air reaches its breakdown of 3 MV/m.  Maybe there is a connection, but for now 
it is just a curious coincidence and nothing more.  However, it does suggest that a further 
analysis might give some greater insight into what happens in solids, liquids and gases at 
high fields. What is clear here is that copper becomes non-ohmic for an E-field near and 
above about 2.7 MV/m.  Hence, Ohm's law cannot be used to calculate charge decay of a 
copper metal if insertion of the perturbing charges results in an E-field above 2.7 MV/m 
anywhere in the metal.

6)   Perturbing number density restriction in metals
The next question to be asked is how does this E-field restriction affect the amount of uni-
form charge that can be placed inside a metal conducting wire such as copper?  The an-
swer is clear.  If the amount of uniform charge placed inside the wire initially gives the 
conductor a uniform charge density ρp0, then any Gaussian surface drawn inside the con-
ductor will initially house a charge density ρG = ρp0. Thus, from (29) to keep the E-field in 
the wire below some defined field E r max

restricts the perturbing charge density to 

 p 02m E r max
/r (55)

and restricts the perturbing number density to 

n p02 s p m E rmax
/ q0/ r (56)

where  sp = -1 for free-electrons.  The minus sign in (56) presents no problem because
Er=E r r and the radial field  Er will be negative since it points radially inward for a 

wire containing perturbing free-electrons;  so sp E rmax
will always be a positive number. 

As an example, it was shown in the previous section that the absolute value of the max-
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imum E-field for copper is 2.7 MV/m. So, for a 2 mm diameter copper wire the radial E-
field maximum is E r max

= -2.7 MV/m. Hence, (55) restricts the perturbing charge densi-
ty ρp0 to below -4.78 x 10-2 C/m3, and (56) restricts the perturbing number density to be-
low 3 x 1017 electrons/m3.  This may seem like a very high number density, but compared 
to the free-electron number density for copper of 8.46 x 1028 electrons/m3 it is very small. 
As a result, if the perturbing charges are free-electrons, then the ratio σp0 / σm  = np0/ne and 
(56) shows for copper this ratio will be no greater than ≈ 3 x 10-12 if Ohm's law is allowed. 
Hence, the assumption 1 + σp0 / σm  = 1 + np0/ne  ≈ 1 is clearly justified. This assumption 
will be used in the next section during the development of the relaxation current equation. 

7)   Relaxation current
If a uniform charge density is placed inside a good conductor, coulomb charge repulsion 
will occur. As depicted in Fig. 1b, the radial current flowing outward due to the perturb-
ing charges) from an incremental length dz of a Gaussian surface of radius r is

I r = J r A
=  E r2 r dz 
= [ pmG r /2m] 2r dz 

= [ pm/ m]0
e−t / m

1
 p0

m

[1−e−t /m]
r 2 dz 

= [m/m]0 e−t / mr 2 dz 

= [0 r2 dz ]m
−1 e−t / m

. (57)

In (57) the first step is simply the writing down of the relationship between the current 
I and the current density J at the Gaussian surface.  Then, to obtain the second step (18) 
was inserted for Jr, and in the third step (20) was inserted for σ and (29) was inserted for 
Er. Next, in step four (21) (with ρp0 = ρ0) was inserted for the Gaussian charge density ρG . 
To be exact σp should also have contained (21), but it was intensionally not inserted here 
(but remember its maximum value is σp0); so, the next step can be seen clearly. Namely, 
for a metal σp0 is several orders of magnitude smaller than σm. So, with the assumption 1 + 
σp0 / σm  ≈ 1, step four becomes step five. The assumption 1 + σp0 / σm  ≈ 1 is also tanta-
mount to recognizing that for a metal (21) reduces to (5).  Finally, in the last step, step 6, 
the electrical relaxation time τm was inserted based on the definition as given by (6). The 
end result is (57) and gives the time dependence of the radial outward charge movement 
due to the presence of a perturbation charge density ρ0 (or ρp0) at time t = 0 in the wire. 

It is very important to the discussion of the Ohm's law paradox to understand what hap-
pened between step four and step five (between the fourth and fifth equal sign).  In step 
four, if everything were multiplied out about the term (σp + σm), there would be two cur-
rents Ip and Im, with Ip associated with σp and Im associated with σm. So, dropping σp be-
cause  σp0 <<  σm means  Ip <<  Im; and, as a result,  the current in (57) becomes just  Im. 
Hence, almost all the free-electron motion that makes up this current is due to the free-
electrons in the ohmic conductor and an insignificant amount is due the free-electrons in-
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serted as a perturbation.  On the other hand, all of the driving force (the E-field) that caus-
es the free-electron motion is due to the insertion of the perturbation charges.

The  radial outward current in (57) is just a current which by definition is  I =  dq/dt. 
Thus, substituting this definition of current into (57) and setting up the integration gives

∫
q0=0

qrem

dq=0r 2 dz ∫
0

t

m
−1 e−t /m dt=−0 r2 dz ∫

0

t

d e−t /m (58)

Performing the integration in (58) gives, as a function of time, the amount of charge re-
moved from within the Gaussian surface as

qrem=0r 2 dz 1−e−t /m . (59)

The charge density removed will be this charge divided by the incremental volume 
πr2dz from which this charge has exited and is

rem=qrem/ r2 dz =01−e−t / m (60)

This clearly shows that as t → ∞ the total charge ρ0 is removed with most removed in 5τm.
8)   Radial drift velocity of the free-electrons

The radial drift speed for free-electrons is given by (37) vdr = beEr and following the same 
procedure as was used in (57) to replace the E-field with the time dependent charge de-
cay (37) becomes

vdr=0 be e−t /m r /2m (61)

At first glance it appears (61) implies at t = 0- the drift velocity is zero because ρ0 = 0, 
and at t = 0+ the drift velocity jumps to its maximum drift and decays back to near zero in 
about 5τm. So, at first glance it would seem like (61) implies an almost infinite accelera-
tion at t = 0.  However, that is not the full story. Going back to the mind's-eye laboratory 
where any experimental procedure is possible, some elaborate injection device had to be 
conceived and used to add the perturbing free-electrons into the metal wire in the first 
place. In the mind's-eye bring ρ0 + ρsu into the wire and hold the charges in place with the 
elaborate injection device. By holding both ρ0 and the set-up charge density ρsu in place, 
the drift velocity of all the charges is zero. Now release all the charges; they start moving 
and pick up velocity from their coulomb repulsion field with time as described by (32). 
After the charge density decays from ρ0 + ρsu to just ρ0 remove the charges that have al-
ready arrived at the surface of the wire and start the clock at t = 0.  Now the set-up charge 
density is gone, and the initial drift velocity is that given by (61) at t = 0.  In other words, 
it is appropriate to have an initial velocity at t = 0, because t = 0 was set as an arbitrary 
time in the decay process and not the specific time when there is zero initial velocity.  

9)   Radial movement of the free-electrons
By definition, the incremental radial movement is given by dr = vdr dt; so, inserting (62) 
into this definition gives

dr=0 be e−t /m r /2mdt (62)
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and setting up the integration gives

∫
r

rr

dr /r=0 be / 2m∫
0

t

e−t / m dt=1/2 p∫
0

t

e−t /m dt (63)

where at t = 0 charges on the Gaussian surface are at r and at t > 0 they have moved to a 
position  at  r +  δr(t).  The  solution  to  (63)   in  terms  of  δr(t)  is

rt =r [em/ 2 p1−e−t /m−1] ;  but,  if  the  perturbing  charges  are  electrons,  then 
m / p=n p0/ne≪1 and this solution reduces further to 

r t ≈r [m/ 2 p1−e−t /m] (64)

and the maximum distance the free-electrons travel (t → ∞) will be

 r=r m/2 p= r /2n p0/ne (65)

As an example, look at a copper wire of 2 mm diameter with a maximum perturbation 
charge density based on the maximum E-field of 2.7 MV/m. For this situation it was pre-
viously shown that for copper the ratio np0/ne will be ≈ 3 x 10-12. At r = rw the Gaussian 
surface is set at the surface of the wire, and this is the surface where an amount of free-
electrons – equal to the original amount of the perturbing free-electrons  –  ends up. For 
this situation, using (65) the distance the charges closest to the wire surface traveled is δr 

=  1.78 x 10-15 m. 
Since the relaxation time is very much less than the collision time, it is the electric field 

of the perturbing free-electrons that drives the drift of all the free-electrons in the metal. 
Hence, a very rough estimate of the distance δr can also be made by taking the average 
drift velocity and multiplying it by the average relaxation time (rather than the average 
collision time) r≈vde m and this calculation gives δr = 1.72 x 10-15 m.  Although for 
the present calculation this distance is very close to that calculated using (65) it should be 
observed that (65) shows the distance traveled is a function of r; i.e., a function of the po-
sition of the charges.  In other words, charges near the center of the wire drift a much 
shorter distance than charges near the surface of the wire, and that is why r≈vde m

gives only a very rough estimate.
It is also interesting to compare the distance δr to the classical radius of an electron ( re 

= 2.82 x 10-15 m) which suggests  free-electrons move less than a diameter's distance from 
their normal positions in order to accomplish charge decay. The finite size of the electron 
also suggests that when the free-electrons reach the surface they are situated in a surface 
having a thickness δr as opposed to the usual assumption of a zero thickness interface. 

10)  Surface layer thickness
To pursue the idea of a finite thickness interface further, assume the surface has a volume 
that stores these charges that arrive at the surface.  If so, then the incremental volume at 
the  surface  of  the  wire  where  these  charges  end  up  would  be

V s= rwr
2 dz− rw

2 dz≈2r rw dz . This volume must hold all the free-electron 
charges that arrive.   The amount of charge that arrives at the wire surface is given by (59) 
with r = rw; and, when all the charges have arrived, there will be a total amount of charge 
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given  by  qrem=0rw
2 dz  .  These  charges  will  be  in  the  volume V s calculated 

above so the volume charge density of the free-electrons on the surface can be defined as

sv=q rem/ V s=0  rw
2 dz/2r rw dz=0 rw/ 2r (66)

and is the charge per unit volume within the thickness layer  δr. Note in  Fig. 1 that if a 
Gaussian surface is placed at the surface of the wire the charge per incremental volume is 

0=qdz /rw
2 dz  , the charge per incremental surface is  s=qdz/ 2rw dz , and 

the ratio is s/0=rw /2 ; so,

s=0 rw/2 (67)

is the surface charge density at the wire after the charges have decayed from within the 
body of the wire.  If this surface charge were actually in a thickness layer δr at the sur-
face, then the volume charge density (of this surface charge density) would be 

sv=s/r=0 rw/ 2r (68)

in  agreement  with  the  definition  (66)  above.  According  to  (65)  at  the  wire
r=rw/2 n p0/ne =rw /20/e  and from (68) this gives

sv=e (69)

as the effective volume charge density of the charges at the surface.  
Equation (69) gives a most interesting result.  It says the charges near the wire surface 

move out into a volume at the surface such that when the decay is finished, these charges 
will occupy a volume equal to the volume charge density of the free-electrons in the met-
al, the thickness of this volume being adjusted such that it will accommodate all the per-
turbation charges, no matter the initial magnitude of the perturbation charge density ρ0.  

With the ion cores of the atoms having a volume charge density of ρa+ the equilibrium 
volume  charge  density  in  the  bulk  is  ρ =  ρa+ +  ρe =  0  and  at  the  surface  is

sv=e=−a + . This exact match of the volume charge density at the surface to the 
volume charge density of the free-electrons (and ion core atoms)  in the bulk suggests 
some sort of coulomb alignment of the charges at the surface occurs to accommodate the 
positions of the free-electrons and ion-cores of the atoms in the bulk conductor.  The re-
sult makes one wonder if there should not be more research in interface thickness!

III.  CONCLUSIONS

It was Maxwell [1] who pointed out Ohm's law (1) is only valid for a homogeneous con-
ductor and only valid when the conductor's electrical conductivity σm is a constant and not 
a function of the potential applied across the conductor or a function of the current that 
passes through it. In this paper a detailed look at the conductivity revealed that when per-
turbing charges are placed uniformly inside a good conductor that these charges create an 
electric field, and the larger the size of the conductor the larger will be the field as one 
moves radially outward.  It was also shown that if the field is too large – in excess of a 
value Emax – it will affect the electrical conductivity σm and negate the use of Ohm's law. 



Proc. ESA Annual Meeting on Electrostatics 2008, Paper D4                                24 

It was further shown that Emax can be calculated using (54) for any metal and is dependent 
on the measured conductivity (or inferred mobility of the free-electrons) of the metal.  A 
discussion on the make-up of conductivity showed only free-electrons can be inserted into 
an isolated metal conductor as any other charging changes its thermodynamic equilibrium 
conductivity. It was further noted that for perturbing charges the equation for charge de-
cay is given by (21), but for metals, where the perturbing charges are restricted to free-
electrons, it reduces to (23) and then – due to the Emax restriction – reduces further to the 
well known decay (5) found in textbooks.  Finally, charge decay of free-electrons based 
on (5) was examined in a copper wire and the result showed the radial charge movement 
to the wire surface is due to movement of all the free-electrons and not just the perturbing 
free-electrons. The examination further showed within the short time period of an electri-
cal relaxation time (6) the free-electrons only drift a fraction of a free-electron diameter. 
It is found that the free-electrons next to the surface of a wire contribute to the current that 
builds up the free-electrons at the wire surface as the internal perturbation charge density 
decays into the metal's free-electron charge density.  The end result is a perturbing free-
electron near the center of a conductor does not have to travel to the surface of the con-
ductor, so no free-electron ever needs to travel faster than the speed of light.  Essentially, 
the perturbing free-electrons create the electric field as the driving force, but it is the free-
electrons normally found in the metal conductor that are the main players in controlling 
the decay. The total decay process can be understood based on Ohm's law (1) with the 
Ohm's law solution for charge decay given by (5) and with the time constant given by (6). 
Consequently,  the  Ohm's  law paradox  does  not  exist,  and  the  results  presented  here 
should end any further discussion of the paradox. 
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