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Abstract— The feasibility of using electrodynamic screens (EDS) for clearing solar panels 
in the dusty atmosphere of Mars has been established. Considerable research is in progress 
for this technology for future missions to Mars and the moon. We present here our work in 
progress in the development of three EDS computer simulations. (1) A 1-dimensional, proba-
bility-based simulation which takes into account applied voltage, frequency, electrode spac-
ing, and particle charge-to-mass ratio, and is effective for simulating large numbers of par-
ticles. This simulation uses MATLAB’s built-in random number generator and a simple iter-
ative approach to simulate large numbers (100’s) of particles. (2) A discrete-time, 2-
dimensional, physics-based simulation which considers the above variables plus atmospheric 
density, gravity, and number of phases has also been developed. This physics-based program 
provides a simulation of motion for a small number (< 100) of particles on an EDS, but re-
quires recalculating the electric field for every iteration. (3) A finite-element, 2-dimensional, 
physics-based simulation which computes the values for blocks of space above the EDS is 
under development. In this simulation the particles travel between these blocks taking a par-
ticular time based on their velocity. In this program the computing time is reduced by calcu-
lating the electric field only once. Electric field calculations generated by these EDS simula-
tions will be compared with models generated using COMSOL software and findings from 
experimental data. 

I. INTRODUCTION 
Photovoltaic Cells are the lifeblood of any extraterrestrial mission, manned or unmanned 
[1].  The primary source of solar power degradation on Mars is sedimentation of dust 
from the Martian atmosphere onto the Photovoltaic (PV) cells [2, 3]. This sedimentation 
occurs continuously, though it is most pronounced during and after the worldwide dust 
storms which blanket Mars every few years. Atmospheric dust poses a serious problem to 
manned and unmanned missions to Mars when it obscures the incident light on the PV 
panel, which lowers the power produced by the PV cells.  
 This obscuration occurs in two ways. The first is atmospheric obscuration in which 
dust particles in the Martian atmosphere disperse light high above the PV cell [2]. The 
second type of obscuration is deposition obscuration. This is caused by dust particles 
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which fall upon and accumulate on the PV cells [3]. This mechanism contributed to the 
ending of the Mars Pathfinder mission and now causes lower power production from the 
PV cells on the Mars Exploration Rovers – Spirit and Opportunity. This deposition ob-
scuration has been substantially less on the highly mobile Mars Exploration Rovers 
(MER), but a stationary solar panel which is not exposed to the constant vibration while 
traversing the Martian surface would rely on the sporadic wind-bursts on the Martian 
surface to clear the PV cells 
 The Electrodynamic Screen (EDS) is one of the primary technologies currently being 
investigated by NASA for dust mitigation on Mars [3, 4]. The EDS consists of a series of 
parallel electrodes embedded in a transparent substrate. These electrodes are excited by a 
three-phase AC voltage (1000V±, 4-30Hz) [Fig.1] to produce a traveling electromagnetic 
wave. The two types of EDS currently being studied are the 2-phase and 3-phase designs. 
The 2-phase EDS sets up a standing wave which levitates the particles but does not effec-
tively move them from the screen. The 3-phase EDS has proven more effective in dust 
removal as it produces a traveling wave between the electrodes. The particles on the sur-
face of the EDS are levitated and propelled by the electromotive force produced by this 
traveling wave [4]. Printed circuit board (PCB) based, 3-phase EDS have been used ex-
tensively to demonstrate the capabilities of the EDS.  They have been used as a stepping 
stone for optimizing the operation of the screens and have shown dust removal efficiency 
(DRE) of greater than 95%. The power consumption of the EDS varies depending on 
electrode spacing, operating voltage, and frequency, but can consume as little as 4 W/m2. 
The EDS can operate continuously to remove dust particles as they fall, but often it is 
only necessary to run the EDS for 30 seconds to remove the dust particles. Thus, only 3.3 
mWh/m2 are required for a daily cleaning cycle. 

 

 
Fig.1: Illustration of 3-phase Electrodynamic Screen 

II. BACKGROUND 
Several research groups including NASA Jet Propulsion Laboratory, NASA Kennedy 
Space Center, and UALR have so far focused on optimizing the operation of EDS.  Dust 
removal efficiency of EDS was increased by varying the parameters such as operating 
voltage, electrode spacing, electrode width, frequency, and run time, to find solutions 
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which are “close” to optimum [5, 6]. We are now developing computer simulations in 
parallel with these experiments to find the optimum parameters for maximizing dust re-
moval efficiency of EDS. 
 Both analytical and computer simulation have been developed and verified for the 2-
phase EDS [7], but not much work has been done with the 3-phase EDS. Thus, there is a 
need for development of a program for simulating particle motion on the 3-phase EDS. 
Previous computer simulation projects which considered electrostatic effects have proven 
effective at demonstrating the behavior of particles on the surface of the EDS. Initial 
findings show a great variety of responses to excitation waveforms and intensities. 

III. CURRENT PROGRESS 
This team is currently developing three simulations using MATLAB software. After the 
completion of the programming for these simulations is completed, the data will be veri-
fied not only with experimental results, but with COMSOL software known as FEMLAB. 
This software is one of the industry leaders in the field of Finite-Element Modeling 
(FEM). 

A. Model (1): 1-D Probability Based Model 
The first simulation presented uses a 1-dimensional, probability-based model which takes 
into account solely the charge/mass ratio of particles, but is highly efficient for modeling 
large numbers of particles. This model uses MATLAB’s built-in random number genera-
tor and a simple iterative approach to model large numbers (100’s) of particles.  Outputs 
include graphics depicting the overall “flow” of positive, negative, and near-neutral par-
ticles based on current understandings of EDS function (Fig. 2). This model makes many 
assumptions about the factors contributing to the movement of particles. In this model the 
charge/mass ratio serves as a starting point for both the mean and the standard-deviation 
for the probability of particle movement.  The Gaussian distribution

 

 
( ) ( )2

2

1 exp
22

x
x Gaussian x

μ
σσ π

⎛ ⎞−
= = −⎜ ⎟

⎜ ⎟
⎝ ⎠

%

  (1) 

was chosen because it allows the movement in both positive and negative directions. The 
mean μ and standard-deviation σ were both based on the charge/mass ratio such that;  

 

 
:Q Qk kM Mμ σμ σ= ⋅ = ⋅

  (2)
 

In this model kμ and kσ were chosen such that a desirable Probability Distribution Func-
tion (PDF) and realistic particle motion would be generated. In fig. 2.a, the values used 
for plotting the position vs. time, kμ and kσ, were 0.5 and 1.5 respectively, while Q/M was 
varied from -50 μC/mg to 50 μC/mg. In figure 2.b, the larger values of 5 and 2.5 were 
used to demonstrate the differences in the resulting PDF for three particles with positive 
(dashed), negative (dotted) and neutral (solid). 
 This model was the first stepping stone on the path to the more realistic models which 
are discussed later in this paper. This team is compiling data and results from these mod-
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gravity g , electrode depth in substrate elecd , particle density partρ , particles surface 

roughness dC , number of phases nφ , and phase voltage Vφ . This first attempt at a phys-
ics-based model provides simulation of motion for an individual particle on an EDS 
(Fig.2, 3). This model also uses an iterative approach to simulate particle motion. The 
model uses an orthogonal coordinate system such that: x is along the EDS surface, per-
pendicular to the electrodes; y  is along the EDS surface, parallel to the electrodes; z  is 
normal to the EDS surface. Only two dimensions are measured with this model, x  and 
z . The EDS electrodes are considered to be infinite line charges along y, located at 

coatz d= − , and elecx n d= ⋅ . The linear charge density for each electrode is calculated 
by using Gauss’s Law to find the electric field for an infinite line charge. 

 
0
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This equation is then solved for linear charge density λ  to produce the following equa-
tion.  

 
0 02 2 abEr Vλ πε πε= =   (5) 

Thus, the sum of contribution for each input voltage applied at each of k  given elec-
trodes located at positions kx can be found for a particular point in space given by x  and z . 
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This operation is done for each particle location during each iteration of the simulation 
using a sampling time sT .  
 A weak point of this model is found as a particle begins traveling very fast. As the par-
ticle moves through a fluctuation in the electric field, it travels farther and farther before 
the next iteration occurs. This results in the particle moving faster than the actual motion, 
resulting in greater inaccuracies. Another undesirable aspect of this model is its long 
computation time. This model requires the calculation of the electric field produced by 
each electrode at the position of each particle during each iteration. As the number of 
electrodes k , particles pN , or iterations iterN  increases, the total number of contribu-

tion calculation cycles cycleN  increases. 
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increments and at certain distances above the EDS. After reviewing this data, the models 
will be refined to better simulate EDS operation. 
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