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Abstract—When a bar of electrically conductive solid material is thermally insulated except 
at its ends and is then heated to a temperature Th at one end while it is held to a cooler temper-
ature Tc at the other end, a linear thermal gradient ∇T develops along the length of the bar. If 
the bar has a free-electron charge density ρ then, since the hot end of the bar has expanded re-
lative to the cold end, the free-electron charge density at the hot end will be lower than at the 
cold end due to this expansion.  As a result, a charge density gradient ∇ρ is set up along the 
bar; and some of the free-electrons diffuse from the cooler temperature end towards the hotter 
temperature end of the bar. This diffusion results in a diffusion charge flux (current density)  
JD which is controlled by the diffusion coefficient D. On the other hand, the movement of some 
free electrons to the hotter end results in an excess of free-electrons near the hotter end; and,  
since the counter-ions of the solid cannot move, an excess of positive charge occurs near the 
cooler end. This charge imbalance along the bar results in an electric field E along the bar and 
creates an E-field driven charge flux JE which drives the free-electrons back towards the cool-
er end. Furthermore, the higher temperature at the hot end gives the free-electrons at the hot-
ter end a slightly higher translational energy, and the thermal gradient ∇T sets up a thermal 
charge flux JG which transports some of the higher energy free-electrons from the hotter to the 
colder end; and this transport is controlled by the thermophoresis coefficient G. However, if 
the bar is not electrically connected to its surroundings, the general charge flux equation re -
quires that –in the steady state– the net electrical current density J must always be zero every-
where within the bar. Along the length of the bar this J = 0 restriction still allows free-elec-
tron movement as long as J = 0 = JE + JD + JG  everywhere along the bar. In essence the tem-
perature difference is responsible for both the thermal and concentration gradients which res-
ults in the movement of the free charges. The movement of the free charges in turn creates an 
E-field; but, since E = -∇V, a potential difference then exists along the length of the bar. In 
this paper the charge flux equation is used to explicitly determine the equation for the poten-
tial difference ΔV = Vh – Vc between the ends of the bar. The result shows that this potential 
difference is related to both the temperature difference ΔT = Th – Tc between the ends of the 
bar and to the thermal expansion coefficient  α of the bar. However, for temperature differ-
ences in the few 10s of degrees the potential difference is found to be independent of the prop-
erties of the bar; and the equation reduces to simply ΔV = k/qe ΔT, where k ≈ 1.38 x 10-23 J/K is 
Boltzmann's constant and qe ≈ -1.6 x 10-19 coulomb is the charge of an electron. At first glance 
the result seems to contradict the findings of thermocouple analysis which predicts each ma-
terial has its own Seebeck coefficient S = ΔV/ΔT. The reason for the apparent difference is dis-
cussed.
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I. INTRODUCTION

At a session of the Berlin Academy of Sciences on December 14, 1820 Thomas Johann 
Seebeck reported that a circuit made from two dissimilar metals with their junctions held 
at different temperatures (for example:  Th and Tc) would deflect a compass magnet  [1]. 
Professor Hans Christian Oersted who earlier that year observed the magnetic effects of 
an electric current immediately realized that a current flowed in Seebeck's circuit; and it 
was the magnetic field from the current that deflected the compass magnet [1]. The gen-
eration of this current due to the temperature difference became the basis of the thermo-
electric generator. It was also found that if the circuit were opened a voltage developed 
across the opened ends. This became the basis of the thermocouple,  and the thermo-
couple voltage is (see discussion below)  ΔV t=(SA−SB )(T h−T c) , where  SA and  SB 

are the Seebeck coefficients of metal A and B, respectively. 
When the temperatures at both ends of the metals are the same, then no voltage occurs.  

This result indicates the cause of the measured voltage must be due to the thermal gradi-
ents within the metals.  

The objective of the present paper is to examine the relationship between a temperat-
ure difference placed at the ends of a single conductor and the potential produced at its 
ends due to this temperature difference.

Unfortunately, at the present time no simple method has been devised to measure this 
voltage drop along a single metal conductor directly. The lack of such an experiment has  
required an indirect measurement using two dissimilar materials and requires an under-
standing of the Seebeck coefficient. However, when examined in this way, the results are 
only as accurate as the basic understanding of the physics of the Seebeck coefficient. 

A. Indirect Analysis
Since  a simple direct  method to measure  the voltage  drop  along a  conductor  in  a 

thermal gradient has not yet been developed, an indirect method using the thermocouple 
voltage must be used. Hence, an understanding of the physics involved in the thermo-
couple voltage is required. The standard analysis is described as follows. If two dissimil-
ar conductors A and B are connected together at their common end and held at a higher  
(or hot) temperature Th while their other ends are each held at a cooler (or cold) temperat-
ure Tc, then there exists a common temperature difference ΔT = Th – Tc across either of 
the two conductors A or B as shown in Fig. 1.
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Fig. 1: General Diagram for a Thermocouple or Thermoelectric Generator
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The incremental voltage change  dV along an incremental distance  dx of a conductor 
due to an incremental temperature change  dT along that distance  dx is found using the 
chain-rule  by  writing  the  equality dV /dx=(dV /dT )(dT /dx )=S dT /dx where

S ≡dV /dT is defined as the incremental Seebeck coefficient of the conductor. Next, 
using this definition of  S and multiplying the equality on both sides by  dx allows the 
equality itself to be written simply as dV =S dT. In general,  S =  S(T), but for small 
temperature changes S is nearly independent of T; and, when this  occurs, dV =S dT
can be integrated – starting from the cold end – along the full length of  conductor A in 
Fig.  1 to  yield  V hA−V cA=SA (T h−T c) . Defining ΔV A=(V hA−V cA) and

ΔT=(T h−T c ) as  the  voltage  difference  and  temperature  difference,  respectively, 
between the ends of the conductor  explicitly defines S A=ΔV A /ΔT as the Seebeck 
coefficient of conductor A. Likewise, dV =S dT can be integrated from the cold end 
along the full length of the conductor B to the hot end to yield S B=ΔV B /ΔT as the 
Seebeck coefficient of conductor B. Hence, in Fig. 1 (if the two meter wires are absent) 
the voltage drop ΔVt across the two open terminals (of A and B) starting from the cold 
end of conductor A, at potential VcA, and ending at the cold end of conductor B, at poten-
tial  VcB, will be ΔV t=ΔV A−ΔV B=V cB−V cA=(S A−S B )(T h−T c ) , where in this res-
ult it is assumed that VhA = VhB at the (zero thickness) interface between A and B (see Sec-
tion B2a below).

If the meter (or connecting) wires are now included in the circuit of  Fig. 1, then the 
voltage drop along the wire on the right, from the cold end of the wire held at temperat-
ure Tc to the open end of the wire at temperature TWoe, must be the same as the voltage 
drop along the wire on the left, from the cold end of the wire held at temperature Tc to the 
open end of the wire at temperature TWoe. As a result, these two voltage drops will always 
cancel each other; so there is no effective voltage drop from the meter leads or connect-
ing wires.

Experimentally  Tc can  be  chosen,  and  Th and  ΔVt can  be  measured,  but  still 
ΔV t=(S A−S B )(T h−T c) is a single equation with two unknowns; namely, SA and SB. 

It  is possible to change a conductor and repeat  the measurements, but no matter how 
many different conductors are used, there will always be one more unknown than the 
number of equations. As a result it is customary to assign to platinum a Seebeck coeffi-
cient  of  zero  (Spt =  0)  which  then  allows  the  equation

ΔV t=V cB−V cA=(SA−S pt )(T h−T c) to give a measurement of the Seebeck coefficient 
of  SA at the temperature  Th. Most often  Tc is chosen as 0°C (a convenient temperature 
found in an ice-water bath); so, the Seebeck coefficients are most often reported with a 
reference temperature at 0°C. For a platinum wire along B in Fig. 1 and Tc = 0°C the See-
beck coefficient of a metal placed along A in  Fig. 1 can be found using the equation

S A=ΔV t/ [T h( C0 )−0oC]=ΔV t /T h( C0 ) , where for Th > 0°C at the hot end the current 
flows from the platinum to metal A when the sign of SA is positive. For example, Kaye & 
Laby [2] list values of ΔVt of several chemical elements relative to platinum (reported at 
T = -100°C and T = +100°C) from which the Seebeck coefficient can be calculated using

S A=ΔV t/T ( C0 ). Experimentally,  the Seebeck coefficient is found to be somewhat 
temperature dependent; many metals have a positive S, but some are negative and a few 
(example: calcium) can change sign as the temperature changes [2]. 
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For Internet enthusiasts interested in thermoelectrics, there is an open-access 8-lecture-
series Short Course on Thermoelectrics given by the International Thermoelectric Soci-
ety [3]. The second lecture by Vining [4] (see Section 8.2, p. 33.) gives the standard clas-
sical argument for a voltage drop across a conductor in a temperature gradient; namely, 
electrons at the hot end have more energy and thermally diffuse to the colder end making 
the hot end positive and giving rise to the voltage difference across the conductor. How-
ever, further considerations are needed because the resultant physics does not explain the 
experimentally  measured  values  of  S. Consequently,  quantum physics  arguments  are 
brought into play [5]. Although progress using quantum physics has been advancing, to 
date no satisfactory explanation for the measured values of all the Seebeck coefficients 
has been presented.

B. Hidden Assumptions
1) Free-electrons

The first assumption in a classical physics discussion of metals is that every solid metal 
has some free-electrons. A free-electron is an electron that can be moved under the action 
of an applied force. In this paper it is also assumed that there are some free-electrons in 
all materials. For example, in the Drude model for a metal, valence electrons are assumed 
to be able to completely detach from their positive ions and form a free-electron gas. In 
the Drude model it is assumed that there is a free-electron associated with each atom of 
the metal and the number density n of the free-electrons is equal to the number density of 
the ions (or atoms), and the charge density  ρ of the free-electrons is, therefore,  quite 
large. However, this free-electron concept can be applied to any material. In a semicon-
ductor the dopant atoms are assumed to each have a free-electron and the number density 
n of the free-electrons is equal to the number density of the dopant atoms. In an insulator 
a hopping mechanism is assumed to allow a few electrons to move; so, the number dens-
ity n of the free-electrons is very small. The net result is even an insulator can be thought 
of as having free-electrons although due to its low number density  n, and, hence, low 
charge density ρ, its electrical conductivity σ is so low as not to be measurable. The net 
result is that each material has a defined charge density  n of free-electrons, and these 
free-electrons can be moved when subjected to the action of any force.

2)      Constant equilibrium properties
The second assumption is that in thermodynamic equilibrium every metal can be de-

scribed by a set of properties which are constant throughout the metal. 
a)      Zero thickness interface

Due to the constant equilibrium assumption above, it is implicitly assumed when two 
metals are connected together at a common interface and placed in thermodynamic equi-
librium that both metals maintain their set of properties up to the common interface. This 
gives rise to the concept of a zero thickness interface with a jump in the properties occur-
ring at the interface. The zero thickness interface implies VhA = VhB at the interface and al-
lows the voltage drops across the conductors to be simply additive when determining ΔVt.
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II.CHARGE FLUX EQUATION

In this Section II the charge flux equation will be summarized. Then in Section III the 
potential drop at the ends of a metal bar held in a temperature gradient will be discussed, 
(A) using the standard classical method, and then (B) adding a charge density gradient 
produced by the temperature gradient.  Finally,  after  applying the results to a thermo-
couple measurement system and finding that the results are insufficient to explain the 
Seebeck coefficient, a finite-thickness interface correction (C) is added to account for a 
potential at the interface. 

This paper looks at finding the voltage drop ΔV along an isolated conductor due to a 
temperature difference ΔT along the conductor using the charge flux equation. What we 
present here gives twice the classical value found in [5]; but we argue that our result is 
correct, and is only part of the classical physics answer. We suggest that by including the 
potential drop across each finite-thickness interface that there may be no need to bring 
quantum mechanics into the picture.

In  general,  the charge  flux equation gives  the charge  transport  of  multiple species 
across a unit area per unit time. In this paper, as is customary in a thermocouple analysis, 
only one specie – free-electrons – will be assumed to be the specie of interest. The charge 
flux equation can be developed based purely on the calculus of a gradient in any scalar 
quantity across a volume element [6].  However, – in the absence of magnetic affects – 
the charge flux equation has also been developed from a classical physics model of colli-
sions [7]; when only electrons are free to move the charge flux equation [7] reduces to 

J=σE−D ∇ρ−G ρ∇ T        Electron Charge Flux  (1)
where σ is the electrical conductivity of the conductor, and based on the – free-electrons 
as the only specie capable of moving – assumption in this paper σ is due entirely to elec-
tron conduction. In (1) E is the electric field at any point where J is evaluated. The other 
terms in (1) are as follows:

ρ=sqn=se qn=q e n=ρe        Electron Charge Density  (2)
where the first equality is the general form and the next three can be used after it is de-
termined that the specie under study is electrons. Specifically, s is the sign (s = ±1) of the 
charged specie (for electrons: s = se = -1), q is the charge on a positron q ≈ +1.6 x 10-19 

coulombs and  n is the number density of the specie (here it is the free-electron number 
density) at the point where J is evaluated. Electron charge is often written as qe = seq ≈ 
-1.6 x 10-19 C. The electrical conductivity is

σ=s2 qnb=s(sqn)b=se (se qn)b=seρe b=−ρe b    Electrical Conductivity  (3)
where here again the first  two equalities are  the general  form for  a conductivity of a 
specie and the next three equalities can be used after it is determined that the specie under 
study is electrons. The mobility b of the  electrons in the conductor is given by

b=q τ /m        Electron Mobility  (4)
where τ is the average collision time and m = me is the mass of the electron, me ≈ 9.109 x 
10-31 kg. The electron diffusion coefficient  D and electron thermophoresis coefficient  G 
are respectively given by
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D=kTb /q        Electron Diffusion Coefficient  (5)
where k ≈ 1.38 x 10-23 J/K is Boltzmann's constant, and T the temperature at the evalu-
ation point and

G=kb/q=D /T        Electron Thermophoresis Coefficient.  (6)

A. Understanding the Charge Flux Equation
The charge flux equation (1) may look daunting at first view, but it is very easy to un-

derstand.  First of all (1) is composed of three flux terms: namely, since E = –∇V, a first 
term 

J E=σ E=−σ ∇ V =−s bρ∇ V        E-Field Charge Flux  (7)
due to the electric field  E (or gradient in potential  V) that may exist in the material, a 
second term 

J D=−D ∇ρ        Density Diffusional Charge Flux  (8)
due to any density gradient ∇ρ that may exist in the material, and a third term 

J G=−Gρ∇ T        Thermophoretic Charge Flux  (9)
due to any thermal gradient ∇T that may exist in the material. In its most condensed form 
(1) can be written with the aide of (7), (8) and (9) as 

J=JE+JD+JG .  (10)
Since (10) is the charge flux at any point in space, (10) can be applied anywhere; so it 

is applicable not only along the length of a conductor in a thermal gradient, it is also ap-
plicable at an interface. Finally, it is at times useful to write (1) with every term contain-
ing ρ and ∇ so, with the aide of (7), (1) becomes

J=−s bρ∇V −D ∇ρ−Gρ ∇T        Electron Charge Flux.  (11)
Written as (11) it becomes immediately clear that there will be a charge flux whenever 

there is a gradient in V, ρ or T, and in all situations the magnitude of the flux will be de-
pendent on ρ or the gradient of ρ. In what follows the usefulness of the charge flux equa-
tion as given by (1), (10) or (11) will be demonstrated.  

III. DISCUSSION

Three different methods of looking at the physics of a thermal gradient along a con-
ductor are presented in this discussion section. 

A. Standard consideration: ∇T causes ∇V
This first method is the standard consideration that ∇T causes a thermal diffusion flux 

of the free-electrons and that this flux gives rise to a potential ∇V [4], [5]. The argument 
goes as follows: Consider a conductor held at one end by a hotter heat source and at the 
other end by a cooler heat sink. Ignore (in this standard consideration section) the fact  
that there is an expansion of the metal at the hotter end which would give rise to a small 
∇ρ term. Ignoring (as was done in [4] and [5]) any ∇ρ the along the conductor the charge 
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flux equation (11) for the free-electrons in the steady state requires J = 0 everywhere, so 
(11), with J = 0 and the aide of (6), reduces to 

∇ V=−[k / (sq)]∇T        Electron Charge Flux: Ignores ∇ρ  term.  (12)
If the change in temperature is only in the x direction, then (12) is simply

dV =−[k /(sq)]d T .  (13)
Integration of (13) from Tc to Th gives 

     ∫
V c

V h

dV = −k
sq ∫

T c

Th

dT

V h−V c = −k
sq (T h−T c ).

 (14)

In this section the charge flux equation was used to explicitly determine the equation 
for the potential difference ΔV = Vh – Vc between the ends of the conductor whose ends 
are at a temperature difference ΔT = Th – Tc; and (14) is simply ΔV = k/qe ΔT. Since k ≈ 
1.38 x 10-23 J/K is Boltzmann's constant and qe = sq ≈ -1.6 x 10-19 coulomb is the charge 
of an electron, –k/(sq) = –k/qe = +8.625 x 10-5 eV/K = 86.3 μV/K. At first glance, the res-
ult seems to contradict the findings of thermocouple analysis which predicts each materi-
al has its own measured Seebeck coefficient S = ΔV/ΔT whereas the Seebeck coefficient 
for metals is on the order of only a few μV/K. This result, based on Maxwell-Boltzmann 
statistics is consistent with the recent findings  of  Fujita and Suzuki [5] based on using 
Fermi-Dirac statistics; namely, they made the same assumption (ignored ∇ρ) and argued 
both holes and electrons are important, so F-D statistics gave them ½ the value of (14). 

B. New consideration: ∇T causes both ∇ρ and ∇V
To analyze an isolated conductor that is in a temperature gradient the full charge flux 

equation given by (1), (10) or (11) must be used. If the thermal gradient ∇T is only in the 
x direction, then concerns on ∇T, ∇ρ and ∇V will only be in the x direction. In the steady 
state no total charge flux can exist (J = 0) and (11) is written as 

0=−sρb dV
dx

−D d ρ
dx

−G ρ dT
dx

.  (15)

But, using the chain-rule d ρ
dx

=d ρ
dT

d T
dx

(15) becomes

0=−sρb dV
dx

−D
d ρ
dT

dT
dx

−G ρ dT
dx

=−sρb dV
dx

−(D
d ρ
dT

+G ρ) dT
dx

.  (16)

If a cubic volume of the metal is of length L0 when at temperature T0 and is heated to a 
temperature  T then  as  noted  in  [8] (see  p.  F-117  in  [8])  its  length  expands  to

L≈ L0 [1+α(T −T 0)] where α is the coefficient of linear expansion.  Furthermore, its 

volume  is Vol=L3=Vol 0 [1+α (T−T 0 )]
3
≈Vol0 [1+3α(T −T 0)] provided  T –  T0 is 

small enough such that α (T−T 0)≪1.   If at temperature T0 there are N free-electrons 
in the volume Vol0, then when at temperature T the free-electron number density is  n = 
N/Vol and  the  free-electron  charge  density  (2)  will  be
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ρ=sqn= sqN
Vol

≈ sqN
Vol 0[1+3α (T−T 0)]

≈ρ0[1−3 α[T −T 0 ] ].  But a series expansion of

e x=1+x+ x2

2!
+⋯ allows  e−3α (T −T0)=1−3α (T−T 0)+

[−3 α(T −T 0)]
2

2!
−⋯ and,  if

3α (T−T 0)≪1, then ρ≈ρ0 [1−3α (T−T 0)]≈ρ0e−3α (T−T 0) . As  a  result,

d ρ
dT

≈
d [ρ0 e−3α (T −T0 )]

dT
≈−3αρ and (16) becomes

0=−sρb dV
dx

−(−3 D αρ+Gρ) dT
dx

.  (17)

Rearranging (17) gives
dV
dx

=− 1
sb (G−3 Dα) dT

dx
=− G

sb (1−3α D
G )dT

dx
=− k

sq (1−3 αT ) dT
dx  (18)

where (6) was used twice in the last step in (18). Multiplying both sides of (18) by dx and 
integrating from one end of the conductor at Tc to the other end at Th gives 

dV = −k
sq

dT+3 k
sq

αTdT

∫
V c

V h

dV = −k
sq ∫

T c

T h

dT +3k
sq

α∫
T c

T h

TdT

V h−V c = −k
sq (T h−T c )+

3
2

α k
sq (T h

2−T c
2)

= −k
sq (T h−T c )+

3
2

α k
sq (T h−T c)(T h+T c)

= −k
sq (T h−T c )[1−3 α

2 (T h+T c)].

 (19)

Typical α values for the expansion of metals (see [2] Section 2.3.5) are typically in the 
range of  (10 - 20) x 10-6/K. So, for Th ≈ 100°C and Tc = 0°C the brackets term in (19) is

1−(3 /2)α(T h+T c )=1−(3 /2)(20 x 10−6/ K )(373.15+273.15 K )=1−0.0194 so the 
error is less than 2% if the potential difference is given by (14) instead of (19). 

From these results it can be stated, if a conductor is in a thermal gradient  ΔT, then 
when the measured potential difference ΔV at the ends of the conductor is plotted against 
the thermal gradient ΔT a straight line of slope k/q = 86.3 μV/K will result (within an er-
ror of < 2% for a 100°C change in ΔT. However, this measurement of ΔV must be made 
without the conductor being connected to other materials or else the Seebeck effect will 
change the measurement. Unfortunately,  to date no known simple and direct measure-
ment technique exists. 

However, if a thermocouple is made by two different conductors as depicted in Fig. 1 
then using (19)

ΔV A=− k
sq (T h−T c )[1−3

2 (T h+T c )α A] ,  (20)

8



Proc. ESA Annual Meeting on Electrostatics 2013; Paper H5

whereas

ΔV B=− k
sq (T h−T c )[1−3

2 (T h+T c )α B].  (21)

So the total voltage from TcA to Th and back to TcB is
ΔV t = ΔV A−ΔV B

 = −k
sq (T h−T c)[1−3

2
αA (T h+T c)]+k

sq (T h−T c )[1−3
2

α B (T h+T c)]
 = k

sq (T h−T c)[3
2

α A (T h+T c)]−k
sq (T h−T c )[3

2
αB (T h+T c )]

= 3
2

k
sq (T h−T c) (T h+T c) (α A−αB )

= −3
2

k
sq (T h−T c) (T h+T c) (α B−αA ) .

 (22)

When platinum is chosen as the reference metal and defined as having a Seebeck coef-
ficient of zero,  the measured Seebeck coefficient becomes defined as  S = –ΔVt/ΔT. A 
comparison with (22) would imply

S =3
2

k
sq (T h+T c )(α pt−α)        Zero Thickness Interface.  (23)

It is noted that (23) has a slight increasing temperature dependence (since temperatures 
are in kelvin), and –k/(sq) is positive (since for free electrons s = –1), and (by default) 
(23) will give the Seebeck coefficient of zero for platinum. However,  (23) does not ac-
count for the measured Seebeck coefficients. For example, (see [2] section 2.3.5 Thermal 
Expansion) for platinum αPt = 8.8 x 10-6/K near room temperature whereas for copper αCu 

= 16.5 x 10-6/K. So, for Th = 100°C and Tc = 0°C (22) gives (recall: ΔV t=V cPt−V cCu ) 

ΔV t=
3
2

86.3μV /K (100−0 )(373.15+273.15 )(8.8−16.5) x10−6=−64.4μ V which 

for  copper  over  this  100°C  change  in  ΔT gives  Scu =  +0.644  μV/°C,  since 
V cCu−V cPt=V cCu−0=−ΔV t when VcPt is referenced to zero. The Seebeck coefficient 

using tabulated data from Kaye and Laby  [2] gives  Scu = +7.6  μV/°C; so, the thermal 
gradient contribution only accounts for about 10% of the Seebeck coefficient of copper. 

From the foregoing it is clear that although (19) or  (20) would be needed to account 
for the potential drop across an electrically isolated conductor in a thermal gradient, (14) 
would be sufficient to describe the potential drop to within a few percent accuracy. How-
ever, if the voltage drop is being measured by adding a second conductor a thermocouple 
results and (22) must be used to predict the potential drop. However,  (22) gives only a 
small fraction of the measured thermocouple voltage and not always the correct sign, so 
something else must be active to fully explain the thermocouple voltage. That something 
else is discussed below.

C. New consideration: Finite thickness interface has both ∇ρ and ∇V
Up until now in the analysis of Fig. 1 it has been assumed that the interface between 

the two conductors is of zero thickness. The zero thickness interface came about due to 
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the logic of James Clark Maxwell. His famous Maxwell's equations first appeared in their 
fully developed form in his renowned textbook [9].  Lesser known in this textbook was 
his struggle to decide how to define surface charge density (see Vol. 1, pp. 72-73 in [9]). 
He presented two possibilities. In one scenario he reasoned that charges had no mass and 
needed no depth to occupy the surface.  In  a  second scenario he reasoned that  if the 
charges had a mass then they would be required to occupy a depth of some finite thick-
ness. He then argued that with the most sensitive instruments of his day no mass was ever 
detected when charges were placed on a surface; and, therefore, a zero thickness interface 
would be the best choice.  Maxwell died in 1879, and it was not until almost 18 years 
after his death that J. J. Thomson discovered the electron had a mass and it was about 
1000 times smaller that that of the hydrogen ion.  It  is reasonable to assume Maxwell 
would have changed his definition of surface charge density to that of having a finite 
thickness had he been privy to Thomson's information.

Now consider two materials A and B that have different characteristic or intrinsic free-
charges densities ρ0A and ρ0B, respectively. Logic and reason indicate that if the two ma-
terials are connected together at an interface then there is an abrupt change in the free-
charge densities at the interface; and a charge density gradient ∇ρ is set at the interface. 
Since free-electrons will move under the action of the diffusional force set up by the 
gradient,  some of the free-electrons in the higher charge density material  will diffuse 
across the interface and into the lower charge density material as described by (8). Be-
cause the ion associated with the free electron cannot move, this sets up and electric field  
E pointing from the higher to the lower free-charge density material. The electric field E 
drives some of the electrons back as described by (7) until an equilibrium is set up where 
the two charge fluxes (7) and (8) are equal everywhere in both materials. The details of 
this problem have been worked out elsewhere [10], [11]; across an interface of two con-
ductors A and B held at temperature T the results reveal a finite thickness interface of a 
well defined thickness λIFAB [11] and an interfacial potential difference given by [10] as

V 0A−V 0B=−kT
sq

ln
ρ0A(T )
ρ0B(T )

 (24)

where ρ0A and ρ0B are the characteristic or intrinsic free-charges densities of the two ma-
terials beyond the thickness of the interface. For the thermocouple problem being studied 
in this paper, since only free electrons are the specie of interest, s = –1, and –(kT)/(sq) = 
–(kT)/(qe) is a positive quantity in (24). 

An examination of (24) is quite revealing. If ρ0A > ρ0B, then free-electrons leave A and 
move into B at the interface leaving A positive with respect to B and resulting in V0A > 
V0B. This logic is clearly found in (24), since, if ρ0A > ρ0B then the ln term is positive and 
hence V0A – V0B will be positive. But, if  V0A – V0B is found to be positive in (24), then by 
logic V0A must be more positive than V0B. 

On the other hand if  ρ0A < ρ0B, then, the ln term is negative and a similar discussion en-
sues to reveal V0B < V0A. 

In the authors' opinions it is this potential drop that occurs at an interface of two solid 
conductors that has been overlooked in the classical analysis of the thermocouple. An in-
terfacial voltage drop described by (24) occurs at the hot junction as well as at each of 
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the cold junctions and each voltage drop contributes to the total voltage drop around the 
thermocouple loop.

To analyze the interfacial voltage drops across a thermocouple note in Fig. 1 that (24) 
indicate a voltage drop occurs across the cold interface or junction of metal A and the 
connecting wire of a magnitude

V 0A−V 0W=−
kT c

sq
ln

ρ0A(T c )
ρ0W (T c)

.  (25)

Likewise, a voltage drop occurs across the cold junction of metal B and the connecting 
wire of

V 0B−V 0W=−
kT c

sq
ln

ρ0B(T c )
ρ0W(T c )

.  (26)

So, if the voltage drops are added starting from the cold wire to the metal A interface,  
then, the sum of these voltage drops will be  (25) minus (24) minus (26) where  (24) is 
evaluated at Th . Since (25) minus (26) have ln terms involving the connecting wires, and, 
since ln A/W – ln B/W → ln A/B, the voltage drop across all three interfaces will add to

ΔV t IF=V cB−V cA=
kT h

sq
ln

ρ0A(T h)
ρ0B (T h)

−
kT c

sq
ln

ρ0A(T c)
ρ0B(T c)

.  (27)

These interfacial voltage drops must be added to (22) to obtain the full voltage drop 
that occurs across the two connecting wires of Fig. 1. Furthermore, the charge densities in 
(27) must be determined at their specific temperatures. 

Note in (27) that if Th → Tc that ΔVtIF → 0 even though, in general, the ln term is not 
zero. Thus, (27)  implies that although there is a voltage drop across an interface at any 
temperature the sum of the voltage drops is zero if all the conductors are at the same tem-
perature; a result that is found experimentally. Furthermore, if two solid conductors of 
the same material are connected together then ρ0A = ρ0B and the ln terms are both zero so 
there is no interfacial voltage drop as would be expected. For a Pt-Cu thermocouple the 
addition of (27) gives –2.08 mV which must be added to the –64.4 μV due to the thermal 
gradient giving –2.14 mV and a Seebeck coefficient of 21.4 μV.

To create a thermocouple two different materials must be brought together to form an 
interface. In the early classical analysis presented above in Section IIIa and IIIb no spe-
cial attention was paid to the interface. Instead the interface was treated simply as a zero 
thickness plane that defines the boundary between the two different conductors. How-
ever, it is well known that when two different uncharged materials are brought together 
and then separated that the materials often are charged to opposite polarities; and this 
phenomenon is known collectively as triboelectric charging or simply tribocharging [12]. 
Clearly, in tribocharging some charges moved across the contacting interface. As a result, 
some charge must have moved across the contacting area in a unit of time – that time be-
ing equivalent to the time of contact. When any two materials are brought together in 
contact, there is no prior indication as to weather the contact will be kept (to possibly 
make a thermocouple) or separated (to possibly produce tribocharging). As a result, there 
must be included in any complete thermocouple theory a consideration of J across each 
interface as well as the consideration that a temperature gradient  ∇Τ will have on the 
physics of the problem.
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IV. CONCLUSIONS

The potential difference across an electrically isolated conductor in a thermal gradient 
has  been analyzed,  is  given by  (19) or  (20),  and involves  α the coefficient  of  linear 
thermal expansion. However, because α is so small, the potential difference can be given 
by  (14) with  ≤ 2% error.  However,  measurement of this potential  difference must be 
measured without introducing errors due to dissimilar metals in contact. This direct meas-
urement has yet to be done. Instead, a thermocouple is used where one metal of the ther-
mocouple is the metal of interest. An analysis using the charge flux equation reveals that 
(19) does not predict the full picture when compared to measured data. A new look at the 
classical analysis reveals that the potential drop across each interface must be taken into 
account when measuring with a thermocouple. This will be the subject of a future paper.
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