
Proc. 2012 Joint Electrostatics Conference 1

Tribocharging and the Finite Thickness Interface

Albert E. Seaver
Retired Consultant
7861 Somerset Ct.

Woodbury, MN 55125
aseaver@electrostatics.us

Abstract—When  two  uncharged  solid  materials  are  brought 
together  and  then  separated,  a  charge  often  occurs  on  the 
surfaces of the two materials where they had been in contact; and 
this  charging  is  referred  to  as  contact  charging,  triboelectric 
charging or simply as tribocharging. Why this charging occurs is 
still  a  question  open  for  scientific  discussion.  In  this  paper  a 
model  for  understanding  the  mechanism  of  tribocharging  is 
presented based on 1) a solid-solid contact interface, 2) the charge 
flux equation, 3) the concept that all materials have some free-
electron charges – many in metals, very few in insulators – and 4) 
the concept – for two materials in contact at an interface and in 
equilibrium – that the total electrical charge flux J must always 
be zero everywhere in both materials. It is shown that across the 
interface this J = 0  restriction still allows free-electron movement 
when under the action of a force. Collision forces, occurring in a 
free-electron  diffusional  gradient,  drive  a  free-electron 
diffusional  current  density  JD which  continually  moves  free-
electrons  across  the  interface  from the  material  of  the  higher 
free-electron charge density and into the material of lower free-
electron charge density. This movement of free-charges sets up 
an electric field E in the same region which gives rise to an E-field 
driven current density JE continually driving the free-electrons 
back in the direction from which they came. In equilibrium JD = 
-JE everywhere  within  the  interface  region,  while  J  =  0 
everywhere. When the two materials are separated free-electron 
charges are inevitably left in the material having the lower free-
electron  charge-density  giving  it  a  negative  charge  while  the 
absence of some of these free-electron charges in the higher free-
electron charge-density material leaves it with a positive charge. 
The model gives a simple and clearly understandable explanation 
of tribocharging. Furthermore, for two materials having only a 
slight difference between their free-electron charge densities the 
thickness  of  the  interface  can  be  predicted.  Results  from  the 
model  describe  the  general  features  found  in  the  hydrophobic 
lower half of a typical triboelectric series table. However, real-
world surfaces can be either hydrophilic (i.e.,  water loving and 
adsorb moisture and pollutants), hydrophobic (water hating) or 
oxidative; and the hydrophilic surfaces found in the upper half of 
a  typical  triboelectric  series  table  will  require  a  further 
refinement  to  the  model  based  not  on  a  solid-solid  contact 
interface but rather on a solid-adsorbed-liquid-solid interface.
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I. INTRODUCTION

When two uncharged solid materials are brought together 
and then separated a charge often occurs at the interface where 
the contact had been made [1]. This charging is referred to as 
contact charging; and if any rubbing of the contacting surfaces 
also occurs, it is referred to as triboelectric charging. Often the 
term  triboelectric  charging  is  reduced  to  the  single  word  – 
tribocharging – and is used as a general  descriptive term for 
any  contact  charging  process  even  when  rubbing  does  not 
occur or is not knowingly initiated. Experimentally,  different 
materials can be contacted and separated, and the magnitude of 
their  charged  surfaces  measured  and  then  listed  in  a  table. 
When  two  materials  are  separated  the  material  receiving  a 
positive  charge  is  listed  above  the  material  receiving  the 
negative charge. Eventually a series of tests can be tabulated 
with the material  receiving the highest  positive charge being 
listed  at  the  top  of  the  table  and  the  material  receiving  the 
highest negative charge being listed at the bottom of the table. 
A table thus developed is referred to as a triboelectric series 
and many such triboelectric series have been developed over 
the  years  [1][2][3][4].  A  generic  representation  of  a 
triboelectric series is shown in  Table 1. The Pareto principle 
[5], aka the 80–20 rule, often used in economics seems to have 
an  analog  to  any  triboelectric  series.  Whenever  a  table  is 
presented, about 80% of researches will agree with the listing 
while 20% will have measured data that is in conflict. Thus, 
any triboelectric series is useful as a guide but can not be taken 
as an exact scientific listing [4].

TABLE 1: GENERALIZED GENERIC REPRESENTATION OF A TRIBOELECTRIC 
SERIES

Classification Surface Property Example Materials

Organic, typically 
polar hydrocarbons

Hydrophilic Asbestos
⁞

Hair, Nylon

⁞ ⁞ ⁞

Inorganic, crystalline Oxidative (corrosion) Metals, 
many Ceramics

⁞ ⁞ ⁞

Organic, typically non-polar 
hydrocarbons and 

fluorocarbons

Hydrophobic Polyethylene
⁞

Teflon, Silicone
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TABLE 2: TRIBOELECTRIC SERIES OBSERVATIONS

# Description

1 Metal to metal tribocharging is usually small 
(low amounts of charge on each metal)

2 Glass and nylon are usually high in the series 
(tend to receive a high positive charged)

3 Silicone and Teflon are usually low in the series 
(tend to receive a high negative charged)

4 Insulator to insulator charging 
tends to be the least repeatable. 

5 Insulators when tribocharged have regions of charge 
that are both positive and negative

6 Hydrophilic materials (which adsorb moisture) 
tend to be found at the top of the series

7 Hydrophobic materials (which do not adsorb moisture) tend to be 
found at the bottom of the series

Some further description of Table 1 is warranted. Referring 
to  Table 1 in  a  triboelectric  event  the further  apart  the  two 
contacting materials appear in the table the higher will be the 
charge after  separation with the material  listed higher in the 
table receiving the positive charge and the material listed lower 
in the table receiving the negative charge. Examples: A nylon-
metal contact results in nylon(+) and metal(-) whereas a metal-
silicone contact results in metal(+) and silicone(-). If properly 
cleaned a metal-metal, nylon-nylon or silicone-silicone contact 
results in very little charging whereas a nylon-silicone contact 
results  in  very  high  charge  transfer  with  nylon(+)  and 
silicone(-). In air many surfaces adsorb some moisture and will 
be covered by a layer of water from less than a monolayer on a 
hydrophobic  surface  to  a  macroscopic  thin  film  on  a 
hydrophilic surface (see [1], pp. 27-28).

In  general,  tribocharging  is  poorly  understood  [1][6][7]. 
However, there have been some general observations [1][4][6] 
[8] regarding  any triboelectric  series;  and these are  listed in 
Table  2.  Likewise  there  have  also  been  some  general 
observations  [1][4][6][8][9] on the tribocharges  produced by 
tribocharging, and these are summarized in Table 3.

Ohm's Law applies to a linear, homogeneous and isotropic 
material, but there is little hope in using Ohm's Law to build a

TABLE 3: GENERAL OBSERVATIONS ON TRIBOCHARGES

# Description

1 Tribocharges have been found 
to some depth in some insulators

2 Electrons are the main specie 
active in some tribocharging events

3 Chemical reaction at the surface can be responsible 
for charging on some surfaces

4 Material removal and deposition at the surface 
can cause tribocharging

5 Tribocharging can be temperature 
and humidity dependent

theory  of  tribocharging.  The  reason  is,  in  the  past,  the 
tribocharges have been assumed to occur at a zero thickness 
interface and Ohm's Law only predicts a voltage drop across a 
region of finite thickness. On the other hand if tribocharges do 
occur  to  some  depth  then  the  material  is  no  longer 
homogeneous and isotropic so Ohm's Law no longer applies 
within  the  interface  depth.  The present  paper  addresses  this 
Ohm's Law conflict and offers a solution to the problem. 

Any theory of tribocharging will have to explain both the 
triboelectric  series  observations  listed  in  Table  2 and  the 
general  observations on tribocharges listed in  Table 3.  This 
paper looks at a new, but very realistic, approach to developing 
an  understanding  of  tribocharging  based  on  the  charge  flux 
equation. As will be discussed, the theory is found to apply to 
the hydrophobic lower portion of Table 1. 

II. SOLID-SOLID MATERIALS MODEL

A  solid  can  be  classified  as  either  a  conductor, 
semiconductor  or  an  insulator  depending  on  its  electrical 
volume resistivity (see [4], p. 53) or its electrical conductivity; 
and one such classification is shown in Table 4. Silver has the 
highest  electrical  conductivity of all the metals;  σ ≈ 6 x 107 

S/m.  In  practice  most  solid  materials  fall  into  either  the 
conductor  or  insulator  category  with  the  exception  in  the 
semiconductor  industry  where  manufactured  semiconductors 
have  an  electrical  conductivity  determined  by  the  impurity 
dopant concentration [10]. In order to understand what happens 
at an interface between two initially uncharged solid materials, 
a  model  must  first  be  defined  for  the  materials.  The model 
chosen here assumes each solid material –when in equilibrium 
with  a  perfectly  non-conductive  gas  incapable  of  electron 
attachment– is homogeneous, linear and isotropic. It is further 
assumed  that  initially  the  solid  materials  are  charge  neutral 
being made up of atoms and molecules that are charge neutral.

The assumption that electrons take part in tribocharging is 
not  without  experimental  evidence  [11].  In  this  paper  it  is 
simply assumed there is some fraction  fie of the atoms in any 
solid which can be treated as if each atom, within this fraction, 
is a positive-charged ion and a negative-charged free-electron. 
It is also assumed that this fraction  fie is near unity in metals 
(Drude  model  [12]),  is  approximately equal  to  the  impurity 
dopant atom concentration to total atom concentration ratio in a 
semiconductor  [10],  and is  of  a  very small  value  in  a  good 
insulator {[13]} see p. 212-213}.  It is known that for insulators 
a small continuous current is found to flow after the application 
of a steady-state electric field and at low fields this current is 
found to be ohmic {[13] see p. 26 and p. 207}. 

In the model chosen here it is assumed that for an isolated 
material the positive-ion-charge density is ρ0+ and the negative 
free-electron charge density is ρ0e and for charge neutrality ρ0+ 

=  –ρ0e everywhere  when  the  solid  is  isolated.  It  is  further 
assumed  the  atoms  cannot  move  from  their  equilibrium 
positions  so  that  ρ+ =  ρ0+ is  constant  throughout  the  solid 
material even when the material is not isolated. However, even 
though the  negative  free-electron  charge  density  is  ρe =  ρ0e 

everywhere  for  an isolated material,  it  is  assumed  ρe –being 
composed  of  free  electrons–  can  freely  vary  to  satisfy  any 
imposed  conditions  at  a  solid-solid  interface.  These 
assumptions are explicitly listed in Table 5.
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TABLE 4: ELECTRICAL CLASSIFICATION OF MATERIALS (ANALOGOUS TO [4])

Classification Range

Conductors  102 ≤ σ ≤ 108 S/m
Semiconductors 10-4 ≤ σ ≤ 102 S/m
Insulators          σ ≤ 10-4 S/m

TABLE 5: ASSUMPTIONS IN THE (SOLID-SOLID INTERFACE) MODEL

# Assumption

1 All solid materials are made up of atoms and molecules

2 An  isolated  solid  surrounded  by  a  perfectly  non-conducting  gas  is 
homogeneous & isotropic

3 Some fraction fie of the atoms behave as if each atom were a fixed +ion 
and a free-electron

4 In #2 and #3 the intrinsic charge densities in the isolated solids are ρ0+ 

for ions and ρ0e for free-electrons

5 The (isolated) charge densities in #4 are ρ+ = ρ0+ and ρe = ρ0e and for 
neutrality ρ0+ = – ρ0e

6 For 2 solids in contact the charge densities are  ρ+ = ρ0+ everywhere, 
but ρe is defined by the interface conditions

7 Total charge flux  J = 0 everywhere, for isolated materials and also 
when in equilibrium contact

8 Total charge flux in the solid is J = J+ + Je but in solids +ions can not 
move: J+ = 0, so J = Je 

9 For two solid materials in equilibrium contact,  ρe must be continuous 
across the interface

10 The charge flux equation [15] gives the total charge flux J 

11 At the  contact  interface a region  develops  in  both  solids  that  is no 
longer homogeneous & isotropic

12 The developed region in #11 has a thickness δIF and constitutes a finite 
thickness interface

13 The  dielectric  constant (ϵr ) – of  the  two contacting  materials  – 
does not change in the interface region δIF

14 The solid-solid contact is between hydrophobic surfaces (no adsorbed 
moisture)

15 There is no generation or recombination of charge occurring anywhere 
including the interface region δIF

III. CHARGE FLUX EQUATION

In tribocharging two uncharged solids are brought together 
in intimate contact as depicted in Fig. 1. Later, when the solids 
are  separated  some  charges  are  found  on  the  contacted 
surfaces. As a result, some charge must have moved across the 
contacting area in a unit of time – that time being equivalent to 
the time of contact. Hence, to understand tribocharging requires 
an  understanding  of  how charges  are  transported  across  the 
contacting  surfaces.  Any transport  of  charge  crossing a unit 
area at a right angle to that area in a unit time is known as a 
charge flux or current density [14].

A. Free-electron Charge Flux
Charge flux is represented by the vector symbol  J and the 

charge flux equation [15] gives the charge transport of multiple 
species across a unit area per unit time, i.e.,  J = ∑Ji. In  the 
present  paper  only  two  charged  species  –free-electrons  and 
bound +ions– are assumed to be the species of interest.  The 
charge  flux  equation  can  be  developed  based  purely on the 
calculus of a gradient across a volume element [16].  However, 
the charge flux equation developed from the classical physics 
model  of  collisions  [15] will  be  used  here  and  when  only 
electrons are free to move the charge flux equation reduces to 
the equation for free-electron charge flux J = ∑Ji  → Je and is 
given  by 

J e=σ E−D ∇ρe−Gρe ∇ T    (Electron Charge Flux) (1)

where  σ is the electrical  conductivity of the material, and –
based on assumption 8 in Table 5, free-electrons are the only 
specie  capable  of  moving–  σ is  due  entirely  to  electron 
conduction. In (1) E is the electric field at any point where J is 
evaluated. The other terms in (1) are the charge density

ρe=qe ne=se q0 ne=−q0 ne  (Electron Charge Density) (2)

where qe = sq0 = seq0 is the charge of the specie (free-electrons 
here) where s = ±1 depending on the sign of the charge, (here 
s =  se = -1), and  q0 is a positive value equal to the absolute 
value  of  the  electron  charge  or  equal  to  the  charge  on  a 
positron,  q0 ≈  +1.6  x 10-19 coulombs,  and  ne is  the  number 
density of the free-electrons at the point where Je is evaluated. 
Note: the present author has chosen to keep s in the equations 
because in more complicated situations where many species 
are involved (e.g., liquids and gases) it is easier to keep track 
of each specie with its sign observable. Conductivity in (1) is 

σ=se
2 q0 ne be=seρe b e        (Electrical Conductivity) (3)

where  be (always  a  positive  number)  is  the mobility of  the 
electrons in the solid given by

be=q0 τ e /me        (Electron Mobility)  (4)

where  τe is the average electron collision time and  me is the 
mass of the electron,  me ≈ 9.11 x 10-31 kg. Note: the E-field 
drift velocity of any specie is defined as {in  [15] see Eq (9) 
and  (14a)}  v dE=sq0

τ
m

E=s bE , so  for  free-electrons 

v dE=se q0
τ e

me
E= se be E=−be E  and as expected the 

electron drift velocity moves opposite to the electric field 
direction. The electron diffusion coefficient in (1) is

D=kTbe/q0        (Diffusion Coefficient)  (5)

Fig. 1: Two solids in contact at the x = 0 plane.

Solid Material A
Properties: εΑ, σΑ, n0eA

Solid Material B
Properties: εΒ, σΒ, n0eB

x

y

δIF
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where k is Boltzmann's constant, k ≈ 1.38 x 10-23 J/K, and T is 
the temperature at the evaluation point. Equation (5) is known 
as  both the Einstein relation  [17],  [18]  and  as  the Nernst-
Einstein  equation  [19].  Finally  the  electron  thermophoresis 
coefficient in (1) is

G=kbe /q0=D /T     (Thermophoresis Coefficient)  (6)

and (6) shows the thermophoresis  coefficient  G depends on 
the electron mobility be. 

A second set of equations similar to (1) through (6) can be 
written for the positive-charged ions by replacing the subscript 
e with a + sign. However, (3) (5) and (6) contain the mobility 
(4) and using assumption 8 in  Table 5 the +ion cannot move in 
the solid and as a result its mobility is zero so (3) (5) and (6) 
will all have a value of zero for the +ion and (1) reduces to

J +=0          (Only valid in a solid)  (7)

as the charge flux equation for the +ion. But everywhere  J = 
J+ + Je and since, as just discussed for solids, J+ = 0 the total 
charge flux is simply  J =  Je which mathematically expresses 
assumption 8 in  Table 5.  At first  glance  it  may seem a bit 
annoying to see (7) obtain the status of a numbered equation, 
but it  will be reiterated in the Discussion Section that (7) is 
crucial in understanding tribocharging.

B. Understanding the Charge Flux Equation
The charge  flux  equation  (1)  may look daunting at  first 

view, but it is very easy to understand.  

1) Ohm's Law:

Consider a solid material –specifically a solid material to be 
considered later for tribocharging– which is surrounded by a 
non-conducting and non-interacting gas at a temperature T.  If 
the solid is homogeneous and isotropic, then ∇ρe=0 and, if 
it has come to thermal equilibrium with the surrounding gas, it 
is at a constant temperature T so ∇ T=0 and (1) reduces to 

J=σE         (Ohm's Law; ∇ρe=0 and∇ T=0 )  (8)

which is the electric field form of the expression for Ohm's 
Law.  

2) Field & Circuit Forms of Ohm's Law:

Some readers  may  be  unfamiliar  with  the  field  form of 
Ohm's Law as given in (8).  The field form can be related to the 
circuit form with the following discussion. Consider a resistor 
of  length  L placed  symmetrically  along  the  x axis  and 
positioned from x = 0  to x = L as shown in Fig. 2. Next, allow 
a current I to pass through the resistor as shown in Fig. 2. But

I=dq /dt=d (s q0)/dt=s (dq0/dt )=s I 0 where the current I0 

is a positive quantity. But the charge flux J is the movement of 
charge  per  unit  time per  unit  area  which  for  the resistor  of 
cross-sectional area A is simply the current I per unit area A.

Hence if A(x) is the cross-section area of the resistor at any 
point x then J =s I 0/ A(x). For the axis of the resistor being 
placed  along  the  x-direction  J and  E have  only  an  x-
component,  so J=J x̂ and  E=−∇ V reduces  to

E=−dV /dx x̂ and  (8)  can  be  written  simply  as 
J =−σdV /dx . Rearranging  this  last  equation  gives
−dV =J dx /σ=s I 0 dx /[σ A(x)]=s I 0 dR where
dR=dx /[σ A(x)] . Set the potential to V at the x = 0 end of 

the resistor and  VL at the distance  x =  L as shown in  Fig.  2. 
Then, integrating dV from V to VL while integrating dR from 0 
to  R (which requires integrating dx / [σ A(x)] from 0 to  L) 

gives R=∫
0

L

dx / [σ A(x)] and  the  integration  gives

−(V L−V )=s I 0 R= IR. Note that this last equation can be 
written as V−V L= IR. and if VL is set to reference ground 
(VL = 0) as shown in Fig. 2, then V= IR which is the circuit 

form of Ohm's Law. Although in general R=∫
0

L

dx / [σ A(x)]

when A has a constant cross-section {as depicted in  Fig. 2 – 
i.e.,  A ≠  A(x)}  then  R becomes  the  more  familiar  form 

R=L /(σ A) .

3) Isolated solids:

Consider a solid material –like a material to be considered 
later  for  tribocharging–  which  is  surrounded  by  a  non-
conducting gas at a temperature T.  If the solid (call it material 
A) is homogeneous and isotropic, then ∇ρe=0 and if it has 
come to equilibrium with the surrounding gas it is at a constant 
temperature  T so ∇ T=0 and  (1)  reduces  to  (8)  so  the 
material satisfies the Ohm's Law criteria.

Next,  take  a  second  solid  material  which  is  also 
homogeneous  and  isotropic  and  repeat  the  same  arguments. 
Since the arguments  are  the  same,  this  second solid  (call  it 
material  B)  also  satisfies  Ohm's  Law  when  completely 
surrounded by the non-conducting gas. 

4) Connected Solids (zero-thickness methodology):

Connect  the  two  materials  described  above in  Section 
3)Isolated  solids:  together.  Both material  A and material  B 
were originally defined as homogeneous and isotropic in the 

Fig. 2: Resistor of length L used to show how the field form of Ohm's Law 
converts to the circuit form.

V
VL

Solid Resistor
of Length L

x

y

L0

A(x)

I

V0 = V

J = I/A
J= J x:
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isolated  state  and  both  followed  Ohm's  Law.  Has  anything 
changed?

5) Zero Thickness Interface (ZTI) Postulate:

Let the following (conventional) postulate be made:

• Assume as a postulate that when two solid materials 
are  connected  together  that  both  materials  remain 
homogeneous  and  isotropic  (including  electrically 
homogeneous and isotropic). 

Consider now Fig. 1 and let the materials fill all space in 
the  yz-plane.  For  the  above  ZTI  postulate  Ohm's  Law  also 
follows  when  they  are  connected  together.  Namely,  each 
material has a well defined electrical conductivity throughout 
the material. When moving a point of interest (say along the x 
direction from the first material (A) occupying all  x < 0 and 
into  the  second  material  (B)  occupying  all  x >  0),  the 
conductivity is well defined at all points except for the jump at 
x = 0. The point x = 0 is the interface and it does not present a 
problem  as  calculus  teaches  how  to  examine  a  point 
approaching from x = 0- or from x = 0+ [20].  Everything is well 
understood using Ohm's Law, and it is logically clear that the 
interface  must have zero thickness  otherwise an interface  of 
finite  thickness  would  invade  the  territory  of  one  or  both 
materials  and  invalidate  the  zero  thickness  interface  (ZTI) 
postulate. 

What is quite useful about the ZTI postulate is that it makes 
Ohm's  Law  valid  everywhere  and  much  of  electrical 
engineering  is  practiced  today  using  Ohm's  Law  albeit  the 
circuit form V = IR rather than the field form given in (8). What 
Ohm's  Law  does  not  do  –and  cannot  do–  is  produce  any 
mechanism  for  charge  transfer  when  two  materials  are 
separated since everything is well specified and therefore well 
known at all time in either material all the way up to the zero 
thickness interface. 

The ZTI postulate does not prove the existence of a zero 
thickness interface, but rather it shows that if, and only if, the 
solids remain homogeneous and isotropic that a zero thickness 
interface will exist. The question of a possible need for a non-
zero  thickness  interface  was  discussed  by  James  Clerk 
Maxwell in regards to the concept of surface charge density, 
and his key ideas are reviewed below.

6) Maxwell's Choice:

James  Clerk  Maxwell's  contributions  to  science  are 
numerous but his crowning achievement was the publication of 
his  two  volume  TREATISE  ON  ELECTRICITY  AND 
MAGNETISM [21][22] in which he combined electricity and 
magnetism to give the framework of electromagnetic  theory. 
Lesser known in his book was his struggle to decide how to 
define surface charge density.  He presented two possibilities 
(see  [21], page 72). In one scenario he reasoned that charges 
had no mass and needed no depth to occupy the surface. In a 
second scenario he reasoned that if the charges had a mass then 
they would be required to occupy a depth of some small but 
finite thickness.  He then argued that with the most sensitive 
instruments of his day no mass was ever detected when charges 
were  placed  on  a  surface,  and,  therefore,  a  zero  thickness 
interface would be the best choice.  Maxwell died in 1879 and 
it  was  not  until  almost  18  years  after  his  death  that  J.  J. 
Thomson discovered the electron had a mass and it was about 

1000 times smaller that that of the hydrogen ion. The question 
which  remains  today  is  would  Maxwell  have  changed  his 
definition  of  surface  charge  density  had  he  been  privy  to 
Thomson's information? Maxwell had also argued that Ohm's 
Law would be of no scientific value if it were not for the fact 
that  the  electrical  conductivity  were  a  single  constant 
throughout the material (see [21], pp. 362-363). As a result, the 
zero thickness interface fit nicely with Ohm's Law.

7) Maxwell's Other Choice:

Maxwell's other choice for surface charge density was to 
define the surface itself as having some depth. One problem 
with  defining  a  surface  as  having  depth  is  that  if  charges 
suddenly reside within the surface then within that depth Ohm's 
Law will not apply.  No one wants to get rid of Ohm's Law as it 
is a cornerstone of electrical engineering. However, it is clear 
that  most  of  the  problems  that  still  remain  in  electrostatics 
involve the surface to some extent. Tribocharging is one area of 
poor understanding,  but another  area  is  that  of the electrical 
discharge. In the Townsend discharge model (see [13], pp. 292-
301) the number of ions grows through ionizing collisions in an 
electric  field and this growth can be predicted by laboratory 
measurements of the first ionization coefficient. However, for 
an arc  to occur these ions on reaching a surface  generate  –
through collisions at the surface– counter charges which travel 
back in the direction opposite the incoming ions. Although the 
growth  of  an  avalanche is  well  documented  by Townsend’s 
first  ionization  coefficient,  the  second  ionization  coefficient 
where the avalanche hits a surface is  poorly understood and 
data  on  the  second  ionization  coefficient  are  scattered  an 
inconsistent [23] just like the data in the triboelectric series. 

8) A realistic compromise:

Clearly a present day dilemma exists. On the one hand –in 
order to use Ohm's Law– the ZTI postulate must be kept which 
gives rise to a zero thickness interface. For an interface of zero 
thickness there is no known physics that would give rise to a 
method of tribocharging the surface. On the other hand, as the 
triboelectric  series  indicates,  tribocharging  appears  to  be 
material dependent so there must be some connection to some 
property of both materials at the interface which suggests the 
interface might have some depth in both materials. 

One possibility of bridging this dilemma is to maintain the 
appearance of Ohm's Law while allowing an interface to have 
depth. As will be shown, this can be done by using the more 
general  form of the charge  flux equation (1)  rather  than the 
more restrictive charge transport equation (8) known as Ohm's 
Law.  The main advantage  of  (1)  is  it  can  handle a ∇ρe
when  an  interface  is  allowed  to  have  a  finite  thickness. 
Furthermore, even when –as will be shown– there can be an 
internally produced E-field across an interface which can give 
rise  to  tribocharging,  if  an  external  E-field  far  exceeds  any 
interface  E-field,  so  that  σE≫−D ∇ρe−Gρe ∇ T , then 
for  that  condition  (1)  still  essentially  reduces  to  (8)  and  all 
calculations can be done using Ohm's Law. Thus, as will be 
shown,  (1)  allows  the  study  of  the  interface  and  gives  a 
physical  model  for  tribocharging  yet  reduces  to  (8)  when a 
sufficiently  large  external  E-field is  applied;  so,  Ohm's  Law 
remains intact for situations where the surface is not important.
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C. Charge Flux Across An Interface 
Using (1) it is possible to understand what occurs across an 

interface  of  finite  thickness.  Bring  two  solids  together  as 
depicted in Fig. 1 and examine the consequences of (1). For the 
sake of the discussion let solid material A have a higher free-
charge number density n0eA than solid material B so that n0eA > 
n0eB which using (2) also means ρ0eA > ρ0eB.   Since charges end 
up on the contacting surfaces when the solids are separated it is 
important to determine the reason why this happens. When the 
solids are brought together as depicted in Fig. 1, there must be 
at least some transient force causing the free-charges to move 
across the yz contacting plane at x = 0. No reference to the ZTI 
postulate  is  made  here.  When  the  contacting  surfaces  are 
together  at  a  constant  temperature  T two things  are  known. 
There are no thermal gradients ∇ T=0 and after any initial 
transient there can be no current J going across the interface or 
anywhere else in the steady state, so J=0 everywhere in the 
equilibrium state. Consider now the interface region of finite 
but as yet undefined thickness δIF as depicted in Fig. 1. In this 
region in the steady state and at a constant temperature when 
the two solids are in contact (1) reduces to 

 J=Je=0=σ E−D ∇ρe .
  (Electron Charge Flux Across An Interface)

(9)

But (9) is composed of two charge flux terms 

JD=−D ∇ρe ,
   (Diffusional Charge Flux Across An Interface)

(10)

and, since, E=−∇ V

 JE=σ E=−σ ∇ V .
       (E-Field Charge Flux Across An Interface)

(11)

So (9) indicates in the steady state it is possible to have two 
current densities –a diffusional current density (10) and an E-
field induced current density (11)– flowing across an interface 
as long as the two current densities are in opposite directions 
and  cancel  each  other  out  everywhere  across  the  interface, 
namely J D=−JE  everywhere across the interface.

1) The Meaning of ∇ρe

The diffusion charge flux (10) contains the gradient term
∇ρe and it is very important to understand just what this 

term represents at the interface. A free-electron is an electron 
that can be moved under the action of an applied force. In this 
paper it has been assumed that there are some free-electrons in 
all materials, an assumption consistent with other models. For 
example, in the Drude model for a metal valence electrons are 
assumed to be completely detached from their positive ions and 
form a free-electron gas. It  is further assumed that there is a 
free-electron associated with each atom of the metal and the 
number density ne of the free-electrons is equal to the number 
density of the ions n+ (or atoms) and the charge density (2) of 
the free-electrons is therefore quite large. In a semiconductor 
the dopant atoms are assumed to each have a free-electron, and 
the number density of the free-electrons is equal to the number 
density  of  the  dopant  atoms.  In  an  insulator  a  hopping 
mechanism  is  usually  assumed  to  allow  a  few  electrons  to 
move, so the number density of the free-electrons is very low. 
The net result is even an insulator can be thought of as having 

free-electrons although due to its low number density  ne and 
hence low charge density (2) its electrical conductivity (3) is, in 
some materials, so low as to not be measurable. The net result 
is that each material has a defined charge density (2) of free-
electrons that can be moved when subjected to the action of a 
force.

When two different solids –each having its own value of 
charge density (2)  of free-electrons– are brought  together  to 
create an interface, there is a sudden jump (at the x = 0 contact 
plane) in the magnitude of the charge density (2) of the free-
electrons.  In  other  words,  there  is  a  gradient ∇ρe of  free 
charge density across the interface at x = 0. Through collisions 
this gradient causes the solid that has the higher free-electron 
charge density to move some of its free-electrons to the region 
of  lower  charge  density  which  is  in  the  other  solid.  This 
gradient ∇ρe creates  the  diffusional  current  density  (10) 
and as noted in (10) the minus sign insures that the movement 
of  the  charge  is  in  the  opposite  direction  to  the  increasing 
charge  density.  That  is  to  say  the  flow  is  in  the  direction 
opposite a positive gradient ∇ρe .

2) The meaning of E or −∇ V

The E-field charge flux (11) contains the electric field E, or 
since E=−∇ V , the  gradient  term ∇ V , and  it  is  also 
very  important  to  understand  just  what  this  term represents 
within the interface region. Previously the diffusion term with 
gradient ∇ρe was discussed, and it was found –when two 
solids are together making contact– the material with the higher 
free-electron  charge  density (2)  had a driving force  through 
collisions  to  move  some  of  its  free-charges  across  the 
contacting area and into the other solid. As soon as this higher 
free  charge  density  solid  gives  up  some  free-electrons,  the 
region around its interface is no longer net neutral and becomes 
charged  positive.  Likewise,  the interface  region  of the other 
solid which has accepted the free-electrons becomes charged 
negative.  But  any  electric  field  E,  by  definition,  starts  on 
positive  charge  and  ends  on  negative  charge.  Hence,  in  the 
interface region an electric field  E begins setting up and this 
field begins to oppose the diffusion of free-electron charges. 
Since E=−∇ V there  is  a  potential  difference  that  occurs 
across the interface region. The injected free-charges continue 
to  spread  out  into  the  low-free-charge-density  region,  but

∇ ρe becomes smaller the further these charges move from 
the contact interface. Eventually, as the charges move further 
away ∇ ρe becomes very small ∇ ρe →0 after which the 
free charge density becomes indistinguishable from the solid's 
intrinsic  free  charge  density.  How  far  the  charges  move  to 
reach this location defines the thickness of the interface within 
the lower-free-charge-density material.

A similar argument can be made in the higher-free-charge-
density solid.  It  gives  up free-electrons  but  the further  back 
from  the  interface  the  smaller  is  the ∇ ρe which  (when 
viewed  in  the  -x direction)  eventually  becomes  very  small 

∇ ρe →0 beyond  which  the  free-charge-density  becomes 
indistinguishable from its intrinsic higher-free-charge-density.

3) Definition: Thickness of Interface:

Consider two materials in contact as depicted in  Fig. 1 with 
solid material  A having a higher  free-electron  concentration 
than material B, i.e., n0eA > n0eB. Further assume both materials 
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are of infinite extent in the yz plane so that the non-contacting 
surfaces (and any of their effects) can be ignored.  For these 
conditions Fig. 1 can be described as having the space to the 
left of x = 0 filled with material A and having the higher-free-
charge density ρe {see (2)} where ρe = ρ0eA everywhere when 
material  A is  isolated  and  where  ρe =  ρ0eA but  only for  all 
points  some  distance  away  from  the  contact  surface  when 
material A is in  contact with material B.  Likewise to the right 
of  x =  0  material  B  will  have  ρe =  ρ0eB everywhere  when 
material  B  is  isolated  and  where  ρe =  ρ0eB but  only for  all 
points some distance from the contact surface when material B 
is in contact with material A. When moving from x << 0 deep 
inside material A, then at a far distance in the -x direction ρe = 
ρ0eA but as ρe moves into the δIF region in Fig. 1 it is no longer 
equal to ρ0eA and must transition across δIF to eventually have 
the lower value  ρ0eB in material  B for all  x beyond  δIF.  The 
transitioning  from  the  intrinsic  higher-free-charge  density 
value in material A to the intrinsic lower value in material B is 
the distance defined as the thickness of the interface. 

4) Calculating ρ0e 

In  the region far  away from the interface the material  is 
ohmic and the electron-charge-density ρ0e for both materials in 
contact can be calculated (although for insulators its value can 
be very hard to estimate). For a metal  ρ0e is relatively easy to 
calculate  [[24]]  (remember  ρ0+ =  -ρ0e).  For  example,  an 
elemental metal has a atomic weight  Aw and has  N atoms per 
unit cell of volume VC and there are Avogadro's number NA ≈ 
6.022  x  1023 atoms/mol;  so,  it  has  a  mass  density 

ρm=(N Aw)/(V C N A)=nC Aw / N A  where  nC is  the number 
density of atoms in a unit cell. But  nC is also the same as the 
general  number  density  of  atoms  in  a  homogeneous  and 
isotropic  material.  Restated  this  equation  gives

nC=ρm N A / Aw . If  some fraction  fie of these atoms can be 
consider as fixed-position ions each with a free-charge then the 
number  of  free-charges  per  unit  volume  is n0 e= f ie nC ,
where  fie = 1 in the Drude model, but experimentally,  at low 
temperature, it has been found to have a value less than unity 
for  the  alkali  [25] and  alkaline  [26] metals.  Using  (2)  and 
defining  ρ0e as  the  intrinsic  free-electron-charge-density  far 
away  from  the  interface  then

ρ0 e=se q0 n0e=se q0 f ie nC=se q0 f ieρm N A / Aw .

For  a  semiconductor n0 e= f ie nC is  known  from  its 
manufacture  since  the  impurity  dopant  concentration  nd 
replaces  nC and  fie =  1,  so,  for  a  semiconductor

ρ0 e=se q0 n0e=se q0 f ie nd =se q0 nd .

For  a  good  insulator  the  intrinsic  free-charge-density  is 
much  more  difficult  to  obtain.  Values  for  the  electrical 
resistivity of  some solid insulator materials are given in [27]. 
The resistivity is the reciprocal of the electrical conductivity σ 
but  assuming  the  conductivity  is  due  to  free-electrons  still 
requires an estimate of the electron mobility be in the insulator 
in order  to obtain  ρ0e {Note:  away from the finite thickness 
interface  ρe = ρ0e see (3)}. More discussion on insulators will 
be  given  later  in  section  IV. Discussion {see  subsection  C. 
Thickness of the interface}.

5) Potential across an interface:

With E=−∇ V and substituting the appropriate term for 
σ from (3) and for D from (5) gives (9) as

 sρe be∇ V=
−kTbe

q0
∇ρe .

      (Electron Charge Flux Across An Interface)
(12)

For two materials with their interface along the yz plane as 
shown in Fig. 1 (12) reduces further to

 ρe d V=− kT
s q0

d ρe .

               (For gradients only in x-direction)
(13)

But (13) can be integrated from far away from the surface 
in either material where the free-electron charge density is  ρ0e 
and the potential is  V0 (Note  V0 can be defined as the zero of 
potential for one of the materials) to some general point along 
x where charge density is ρe and potential is V which gives

ρe=ρ0 e e
−sq 0

kT (V−V 0 )
 (14)

On the other hand if (13) is integrated from far away from 
the surface in material A where the potential is V0A all the way 
up to the contact  surface  at  x = 0 where  ρeA =  ρeIF and the 
potential  is  VIF,  and then,  from  x = 0 to far  away from the 
surface in material B where the potential is V0B the result –after 
recognizing  it  does  not  matter  from  which  direction  the 
integration is performed because when at  x = 0 then  ρe =  ρeIF 
and the potential is VIF– is {see [28] for details} 

 V 0A−V 0B=− kT
se q0

ln
ρ0eA
ρ0eB

=− kT
se q0

ln
n0eA

n0eB

       (Potential Drop Across the Full Interface)
(15)

which  is  the  potential  drop  across  the  full  interface  of 
thickness δIF. It is clear from (15) that the potential drop across 
the full interface is dependent on both solids –namely the free-
electron charge (or number) densities of both materials. At a 
fixed  temperature  T the  ln  term  in  (15)  determines  the 
magnitude  of  the  potential  drop.  For  two metals  in  contact 

n0eA /n0eB=( f ie A / f ie B)(ρm A /ρm B)(AwB / Aw A) . Constantan is 
a  copper-nickel  alloy  consisting  of  55%  copper  and  45% 
nickel which, at this mixture, gives a calculated atomic weight 
of  61.27  g/mol  and  density  of  8.9146 g/cc.   Copper  has  a 
density of 8.92 g/cc and an atomic weight of 63.546 g/mol. A 
copper-constantan  junction  is  a  type  T  thermocouple. 
Assuming the Drude model for metals (fie = 1) and using (15) 
to calculate the potential of a thermocouple at 21°C with its 
cold  junction  at  20°C  (so  as  to  minimize  any  thermal 
expansion errors) gives only -3.1 μV/°C whereas the data for a 
Type T thermocouple shows +40 μV/°C. To obtain the correct 
sign and magnitude requires assuming constantan has (for the 
major component: 55% copper)  fieCu = 1, and assuming only 
12.5% of the nickel  gives  rise to free-electrons in the alloy 
state, so that fieCu / fieCon ≈ 1.65. This would be consistent with 
the known electrical conductivity decrease for constantan σConst 

= 2.04 MS/m whereas σCu = 59.6 MS/m and σNi = 14.3 MS/m. 
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According to (3) this drop in  σConst must be attributed to both 
decreases in free-charge density ne and mobility be.

D. Total charge density across an interface
Up  until  now  everything  discussed  concerned  the  free-

electron charge density in either material. But what about the 
total charge density in the two materials? In the ohmic region 
away from the interface region there is both the free-electron 
charge density and the ion density of the atoms that make up 
the  net-neutral  total  charge  density  in  either  of  the  two 
materials. It is only near the interface that the free-electrons try 
to  diffuse  across  the  interface.  The  total  charge  density 

ρ=ρ0 ++ρe is  the sum of the contributions from both the 
ions  and  the  free  electrons.  Far  away  from  the  interface

ρe=ρ0 e=−ρ0 +  and the material is neutral, i.e. ρ=0.  But 
everywhere  the  total  charge  density  must  satisfy  Poisson's 
equation and for the situation in Fig. 1 (no variation in y and z) 
Poisson's equation –with the aid of (14)– is given by

 d 2V
dx2 =−ρ

ϵ=−
se q0 n0 +

ϵ −
se q0 n0e

ϵ e
−se q0

kT (V−V 0) (16)

The problem of studying the total charge density has been 
worked out in detail elsewhere [29] and only a few highlights 
are  presented  here  to  give  some clarity  to  the  concept  of  a 
thickness of the interface. For the solid-solid interface problem 
shown in Fig. 1, and after noting n0+ = n0e and s+ = – se and with 
the following change of the variable 

Y =
se q0

kT (V−V 0 )  (17)

Poisson's  equation (16) in a  solid material  with permittivity
ϵ reduces to 

d 2Y
dx2 =κ2(1−e−Y )  (18)

 where

λ= 1
κ=√ kT ϵ

se
2 q0

2 n0e

=√ kT ϵ
q0

2 n0 e

      (Debye Length)  (19)

is  the well  known Debye  length {see  [19],  p.  134}.  At the 
present  time  no  general,  closed-form  solution  to  (18)  is 
known,  but  for  the  special  case  of  potentials  across  the 
interface below a few millivolts, where Y << 1 (18) reduces to 

 
d 2 Y
dx2 =κ2(1−e−Y )≈κ2Y

        ( valid only when Y ≪1; [LMA])
(20)

which  in  [29] is  referred  to  as  the  low-millivolts 
approximation (LMA), and (20) has the solution Y =Y s eκx

for  negative  values  of  x (material  A) and  Y =Y s e−κ x for 
positive  x (material  B).  The  boundary  condition,  at  the 
interface located at x = 0, is V = Vs where Vs is the potential at 
the contact  surface; namely

Y s=
se q0

kT
(V s−V 0) .  (21)

Hence, for material A to the left of the origin, the solution 
to (20) gives the potential  VA(x) along material A, and to the 
right it gives VB(x) along B as [29]

V A(x)=V 0A+(V s−V 0A)eκA x     −∞≤x≤0−  (22)

V B( x)=V 0B+(V s−V 0B)e−κBx       0+≤x≤∞  (23)

In  [29] the complete solution of the electrical behavior in 
both materials is presented and includes the electric fields, the 
potentials across the interface and the surface charge densities 
of  the  two materials  before  separation  (Note:  remember  the 
surface region has a  thickness  so charges  can and do reside 
within the interface).  It  will  suffice here to mention that  the 
surface charge densities contain the ln (n0eA/n0eB) term found 
in (15) so their magnitudes are also controlled by the number of 
free-electrons  in  the  two  solid  materials.  For  the  sake  of 
completeness  it  is  noted  that  in  [29] the  surface  charge 
densities are also affected by ϵA , ϵB and the temperature T.

IV. DISCUSSION

To understand tribocharging requires  an understanding of 
what charges do when two solid materials contact each other to 
form a  solid-to-solid-contacting-interface.  In  this  paper  it  is 
assumed  that  all  solid  materials  have  some  atoms  each  of 
which can be defined as consisting of a positive-charged ion 
and a free-electron. As a result any specific material will have a 
certain electron number density ne = n0e and charge density ρe = 
ρ0e dispersed uniformly in the bulk of the material where  n0e 

and ρ0e are constants and are properties of the specific material. 

A. Where the model succeeds
In this paper the application of the charge flux equation (1) 

to the solid-solid interface has shown that the electron charge 
density  ρe is  subjected to a diffusional gradient  at the solid-
solid contact-interface. This results in a number of interesting 
implications for the interface and for tribocharging in general. 
First and foremost is that the interface has a thickness across 
which  a  potential  exists.  For  small  differences  in  the  free-
electron  number  densities  between  two  solids  that  potential 
across the interface changes exponentially on either side of the 
contacting area of the surfaces as described by (22) and (23). 
The material's Debye length  λ given in (19) is the controlling 
factor in the potential change, and the thickness of the interface 
within any material will be ≈ 5λ. As a result, the total thickness 
of  the interface  will  be δIF≈5 λA+5λB . The full  potential 
across the interface is given by (15) and can be quickly used to 
determine  the  sign  of  the  charge  on  each  material  after 
tribocharging.  Specifically,  remembering that  −1 /se=+1
for  electron  transport,  (15)  reduces  to  simply

V 0A−V 0B=(kT /q0) ln (n0 e A /n0 e B). But ln (1)=0 and
ln (1+ )>0 whereas ln (1-)<0, so  when n0eA>n0eB the 

ln term is positive and  V0A must  be positive with respect  to 
(wrt) material B. Alternatively, when n0eA<n0eB the ln term 
is  negative  and  V0A must  be  negative  wrt  B.  These  results 
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explain the data of the lower-half of Table 1. Namely, the more 
conductive materials found in the middle of the table –have a 
higher electron number density n0e and– are higher in the table 
and are always  found to be positive when tribocharged after 
being  in  contact  with  a  lower  listed  material.  Likewise  the 
lower listed material –has a lower electron number density n0e 
and– is always found to be negative when tribocharged after 
being in contact with a higher listed material.  Furthermore, the 
further the free-electron number density of an insulator is from 
that of a metal, the lower is the insulator in the table.

The model also explains the contact charging of hailstones 
with ice crystals in thunderclouds where the more conductive, 
impure  hailstones  become  positive  and  the  much  less 
conductive pure  ice crystals become negative [30].

B. Where the model needs to be modified
Although the above argument is in general agreement with 

the lower half of Table 1 the same argument fails miserably in 
attempting to explain the upper half of  Table 1 because there 
the higher listed materials are positive even though the lower 
listed materials in the middle of the table have a higher electron 
number  density  n0e.  As  a  result,  the  theoretical  analysis 
presented here is either wrong or something else is occurring 
that has not been described in the analysis.

It is this author's belief that the analysis presented here is 
correct and that assumptions 2, 6, 8 and 14 in Table 5 clearly 
state  the  theory  is  only applicable  to  two solids  in  intimate 
contact.  The lower half of Table 1 usually satisfies the solid-
solid contact requirement. In other words, it is the hydrophobic 
nature of observation 7 in Table 2 that allows the application of 
the theory presented in this paper. On the other hand, the upper 
half of  Table 1 is ripe with solids which adsorb moisture and 
other hydrocarbon pollutants (see observation 6 in Table 2) and 
as a result an interfacial contact made in the upper half of a 
triboelectric  series  table  is  actually  a  solid-adsorbed-liquid-
solid  interfacial  contact  with  the  liquid  layer  intimately  in 
contact with both the first and second solids. In the liquid layer 
the positive ions are free to move so (7) is no longer valid and 
Poisson's Equation as given by (16) is not valid in the liquid 
layer.  As a result, the analysis presented in this paper is only 
valid for a  solid-solid contact  which is essentially the lower 
half of Table 1. For the upper half to be predicted by the charge 
flux equation will require a further analysis valid for a solid-
liquid-solid interface.

The theory of a conducting liquid against a charged surface 
has  been  worked  out  and  is  known  as  the  Gouy-Chapman 
theory [19] which gives a solution to Poisson's equation in the 
liquid.  The  theory  predicts  that  a  liquid  in  contact  with  a 
charged solid surface defined at a fixed potential has opposite 
charged ions in the liquid tightly bound to the surface in what is 
known as the Stern (or Helmholtz) layer,  and adjacent to the 
Stern  layer  is  a  region  called  the  diffuse  layer  containing 
loosely bound mobile ions.  This Stern layer may be related to 
what is happening at the hydrophilic interface. As discussed in 
the next section the interface thickness of a liquid layer can be 
on the order of a micrometer whereas the actual thickness of 
the adsorption layer may only be on the order of a nanometer 
or less so all the physics of a solid-liquid-solid interface may be 
occurring  within  the  Stern  layer.  For  example  consider  an 
insulator in the upper half of Table 1 in contact with a metal in 
the middle of  Table 1. If  there is a liquid layer  between the 

insulator  and  the  metal,  then  the  higher  free-charge  density 
metal places electrons into the liquid and electron-attachment 
then  creates  negative  ions  in  the  liquid.  In  the  liquid  layer 
positive ions also exist and are free to move and will result in a 
layer  of positive ions strongly attracted to the negative ions. 
But if the actual adsorption layer  is only a couple of atomic 
layers thick these positive ions are also located at the insulator 
interface and become acceptors for free-electrons located in the 
insulator.  Thus,  the  insulator  gives  up  electrons  making  it 
positively charged. When the two materials are separated the 
liquid layer through coulomb attraction stays with the higher- 
charge-density metal  leaving it  negatively charged  while the 
insulator having given up electrons remains positively charged. 
At  the moment  this  is  still  conjecture  as  the physics  of  the 
liquid  interface  must  be  investigated  using  a  charge  flux 
equation for each specie that exists in the liquid in place of (7). 

C. Thickness of the interface
Just how thick is an interface? The Debye length (19) for a 

metal  like  copper  is  λCu≈0.01 nm=0.1Å so
5λCu≈0.5 Å suggesting only the outermost atomic layer of 

the  metal  takes  part  in  supplying  free-electrons  for  the 
diffusion.  At the other extreme good insulators have very low 
conductivity as for examples PET (σ ≈ 10-21 S/m), Teflon (σ ≈ 
10-24 S/m), Hard Rubber (σ ≈ 10-14 S/m), and most Glasses (σ ≈ 
10-11 - 10-15 S/m). For polymers typical values of mobility are in 
the range of 10-15 m2V-1s-1 to 10-8  m2V-1s-1 {see [13], p. 211}. 
Compared to copper (n0e = 8.5 x 1028 electrons/m3; σ ≈ 6 x 107 

S/m) it  can be seen using (3) that  –assuming a typical  mid-
range insulator might have a conductivity of 10-10 S/m and an 
electron  mobility  of  10-11 m2V-1s-1–  a  free-charge  number 
density  of  a  mid-range  insulator  is  about  n0typ-insul =  1020 

electrons/m3 {see [1], p. 26}. So the ratio of a metal to a mid-
range insulator density is ≈ 108 and ln 108 ≈ 20 which means at 
room temperature {20 ºC (293 K)} where  kT293 ≈ 25 mV the 
typical voltage across the interface is 500 mV, whereas for two 
metals at a full order of magnitude in density difference ln 101 

= 2.3 and the typical voltage drop across the interface is at best 
only  about  50  mV.  Finally,  a  typical  insulator  will  have  a 
dielectric constant of ϵr=3 ; so, at room temperature it will 
have a Debye length of λ ≈ 205 nm and 5λ ≈ 1000 nm = 1 μm 
as the depth of the interface for the typical mid-range insulator. 

On the other hand, if a solid adsorbs moisture and it is in 
the form of pure water at a pH of 7 then λH2 O≈1350nm . 
But  water  vapor  is  usually  in  equilibrium  with  the  typical 
present  day  concentration  (300  ppm) of  CO2 and  has  a  pH 
around 5.6 (λH2O≈270 nm ) . According to the United States 
Environmental Protection Agency [31] as of the year 2000 the 
most acidic rain falling in the U.S. has a pH of about 4.3 giving

λH2 O≈60 nm. In all these cases of moisture adsorption the 
Debye length is greater than the typical monolayer of adsorbed 
moisture so the adsorbed layer is fully involved at the interface. 
To  reiterate  this  liquid  adsorption  problem  has  not  been 
addressed in the model presented in this paper.

V. CONCLUSIONS

The charge flux equation was used to study the charging 
characteristics of a solid-solid contact interface. The simplified 
model  chosen  is  one  in  which  any  solid  material  has  some 
fraction of it atoms which can be treated as if each of these 
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atoms is a positive ion and a free-electron. The free-electrons 
are free to move under the action of any force including the 
force due to collisions.  The charge flux equation showed that 
at  the plane  of  interfacial  contact  the difference  in  the free-
electron  concentrations  of  the  two  contacting  materials 
constituted a concentration gradient across the interface which 
caused  a  diffusion of  free-electrons  from the  solid  with the 
higher concentration to the solid with the lower concentration. 
Because  the  positive  ions  cannot  move  this  free-electron 
diffusion  leaves  the  material  with  the  higher  free-electron 
concentration  positive  while  the  material  with  the  lower 
concentration becomes negative in the region of the interface. 
An E-field  sets  up within  the  interface  region  opposing  the 
diffusion. In  equilibrium the steady state of diffusion charge 
flux  JD is just offset by the E-field charge flux  JE so that the 
total  flux  J =  JD +  JE = 0 everywhere  in the two materials 
including in the interface region. The interface region depicted 
in Fig. 1 is found to be of a thickness δIF≈5 λA+5λB where 
from (19) λA=√kT ϵA / (q0

2n0 e A ) an λB=√kT ϵB/ (q0
2 n0eB)

are  the  Debye  lengths  of  the  solid  materials  A  and  B 
respectively, ϵA and ϵB are  the  respective  permittivities 
with n0e A and n0e B the  respective  concentrations  of  the 
free-electrons in the region away from the interface region of 
thickness δIF. The model has been used to successfully predict 
the features of the lower half of a generic triboelectric series 
table such as described in  Table 1. The model does not predict 
the  upper  half  of  the  table  and  that  is  believed  due  to  the 
hydrophilic  nature  of  the  materials  in  the  upper  half  of  the 
table. Hydrophilic solid materials will have a double interface 
when in contact with another solid as it is no longer a solid-
solid contact but rather a solid-liquid-solid contact. The liquid 
contact will require a further refinement to the analysis. 

VI. NOMENCLATURE

Because the approach presented in this paper may be new to 
some who are engaged in the study of tribocharging, a table of 
nomenclature is presented in Table 6 to help the reader quickly 
grasp the terminology.

TABLE 6: NOMENCLATURE

Item Description Units

∇ Vector “Del” operator; ∇=
∂  
∂ x x̂+

∂  
∂ y ŷ+

∂  
∂ z ẑ m-1

x̂ Unit vector in the positive x direction

r̂ Unit vector in the positive r direction
ϵ0 Permittivity of free space; ϵ0 ≈ 8.85 x 10-12 F/m F/m
ϵr Dielectric constant of either solid (if the solids are A 

and B then the designation is ϵr A  or ϵr B)

ϵ Permittivity  of  either  solid (ϵA  or ϵB ) Note:
ϵ=ϵ0 ϵr

F/m

A Cross sectional area; see Fig. 2 m2

A Solid Material A

Aw Atomic weight of the solid kg/mol

B Solid Material B

be Electron mobility in the solid; see (4) m2/(V∙s)

Item Description Units

D Electron diffusion coefficient in the solid; see (5) m2/s

δIF Total thickness of the interface; δIF≈5 λA+5 λB m

E Magnitude of the electric field V/m

E Electric  field  vector E=E r̂ ;  and  if  only  in  x 
direction E=E x̂  

V/m

fie Fraction  of  atoms  in  solid  with  free  electrons; 
conductor f ie=n0e /nC

G Electron thermophoresis coefficient; see (6) m2/(s·K)

I Magnitude of an electrical current; includes standard 
direction see Fig. 2

C/s

I0 Absolute  value  of  the  current  I;  see  Fig.  2 and 
section III.B.1) Ohm's Law:

C/s

J Total charge flux; for solid-solid contact this total is
J = ∑ Ji = J+ + J- and J+ = 0

C/(s·m2)

J+ Charge flux of +ions; see (7) C/(s·m2)

JD Electron diffusional charge flux induced across the 
interface; see (10)

C/(s·m2)

JE Electric  field  induced  charge  flux  across  the 
interface; see (11)

C/(s·m2)

Je , J- Charge flux of free electrons (Note: Je = J-); see (1) C/(s·m2)

k Boltzmann's constant; k ≈ 1.38 x 10-23 J/K J/K

λ Debye length; see (19);  λA and λB are the lengths in 
solid A and in solid B

m

L Length; see Fig. 2 m

ln(p) Log to the base e; ln(e) = 1, see (15)

me Mass of the electron; me ≈  9.11 x 10-31 kg kg

N Number of atoms in a unit cell 

ne Electron number density anywhere including within 
δIF ; see (2)

m-3

n0+ Ion number density anywhere in the solid;  n0+ =  n0e 

outside δIF region
m-3

n0e Electron number density outside the interface region 
of thickness  δIF

m-3

NA Avogadro's number; NA ≈ 6.022 x 1023 atoms/mol mol-1

nC Number  density  of  atoms  in  a  unit  cell;  same  as 
number density in solid

m-3

nd Semiconductor  dopant  concentration;  typically
f ie=n0e /nd

m-3

ne Electron number  density anywhere in the solid;  ne 

varies inside δIF

m-3

q0 Charge  on  positron  (or  negative  of  charge  on 
electron) q0 ≈ +1.6 x 10-19 C

C

qe Electron charge  qe = sq0 = seq0 (se = –1) C

R Resistance (resistor); see Fig. 2 W

ρ+ Charge density of +ions anywhere in the solid; ρ+ = 
ρ0+ everywhere

C/m3

ρ0+ Constant charge density of +ions in solid  C/m3

ρ0e Constant charge density of free electrons away from 
the interface region

C/m3
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Item Description Units

ρe , ρ- Charge density of electrons anywhere in the solid; 
see (2) ρe ≠ ρ0e within δIF

C/m3

ρeIF Volume  charge  density  of  electrons  at  the  contact 
interface

C/m3

ρm Mass density of the solid kg/m3

σ Electrical conductivity in the solid; 
see (3) 

S/m

s Sign  of  charge  on  a  specie  (for  solids:  s =  1 for 
+ions; s = –1 for electrons)

se Sign of charge on electron specie (for electrons s = 

Item Description Units

se = –1)

T Temperature; T(K) = 273.16 + T(°C) K

τe Electron  collision  time;  mean  time  between 
electron-atom collisions

s

V Potential at x; V = V(x) V

VC Volume of a unit cell m3

VIF Potential at the contact interface V

Y Dimensionless potential; see (17)
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