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Abstract -- The aim of this work is the development of a
procedure for the optimization of electrostatic separation
processes using artificial neural networks (ANN) in association
with genetic algorithms. The objective was to maximize the
insulation product, the control variables being the high-voltage
that supplies the electrodes system and the rotation speed of the
roll electrode. The ANN model is compared with that obtained
using the classical experimental design methodology. The
predicted optimum is confirmed by experiment.

Index Terms—electrostatic separator, artificial neural
networks, genetic algorithms.
L INTRODUCTION
The roll-type corona-electrostatic  separator [1-3]

represents the most advantageous technique used in industry
for the separation of conductive and nonconductive particles
from granular mixtures [4]. In most applications the operation
of the electrostatic separator is controlled by the high-voltage
applied to the corona electrode and the speed of the grounded
roll electrode. To increase the quality of separation, the
adjustment of these control variables is done by examining
their effects on response of the process [5-7]. Due to the
complexity of the many interacting phenomena, an accurate
physical model of the separator is impossible to build. This is
why in previous works empirical models have been derived
using experimental design methodology [8-10].

Such models enable the optimization of the process and
can be employed in conjunction with fuzzy logic or genetic
algorithms as tools for controlling the operation of the
separators [11, 12]. It is obvious that the effectiveness of such
approaches is strongly related to the accuracy of the available
models and, in the case of fuzzy logic control [13], to the
quality of the expert knowledge.

The aim of the present paper is to point out that the
artificial neural network (ANN) techniques can accurately
model the electrostatic separation, so that to facilitate the
optimization of the process by the use of genetic algorithms.

II. EXPERIMENTAL MODELLING

The experimental design methodology [14. 15] is
subsequently used to derive a model that can predict the
outcome of a standard roll-type corona-electrostatic
separation process (i.e., the mass of the insulating product) as
a function y of n input (control) variables x; :
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Fig.1: Schematic representation of the central composite faced (CCF)
experimental design.

y:a0+z aix‘+2[2avxixj] (1)
where a@; (i = 1..3) designate the coefficients of the
mathematical model.
In the present work, n = 3 and the control variables were

the following:

- Roll-speed N (rev/min);

- High-voltage applied to the electrode corona U (kV);

- Feed-rate D (kg/h).
The experimental domain was set based on the results of
previous studies carried out on a similar process [10]:

60 rev/min < N < 100 tr/min 2)
26kV < U < 30kV 3)
6kg/h < D < 12kgh “4)

The a; coefficients were determined from the results of a
central composite faced experimental design (Fig. 1,
Appendix 1). The recovery of PVC granules (mpyc) was
considered to be the response y of the process of interest to
this study. For each experiment mpyc was determined as the
ratio between the mass of the PVC particles recovered in the
“insulating material” compartment of the collector and the
mass of PVC in the feed. The model obtained after processing
the experimental data with the software MODDE 5.0 [16]:

mpyc [%] = 69.73+2.81n +4.65u —9.74d -1.76nu + 5)
6.78nd + 1.77ud

where u, n and d represent the normalized centered values of
the control (input) variables U, N and D.
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APPENDIX [
MASS OF THE PVC PRODUCTS OBTAINED BY CCF EXPERIMENTAL DESIGN
N U D M
[rev/min] [kV] [kg/h] [g]
60 26 6 78.73
100 26 6 74.39
60 30 6 87.62
100 30 6 75.25
60 26 12 43.15
100 26 12 19.48
60 30 12 58.12
100 30 12 73.87
60 28 9 66.89
100 28 9 74.17
80 26 9 62.68
80 30 9 75.49
80 28 6 94.11
80 28 12 57.98
80 28 9 73.30
60 26 6 78.73
100 26 6 74.39
APPENDIX II

MASS OF THE PVC PRODUCTS OBTAINED BY ADDITIONAL EXPERIMENTS
DURING THE LEARNING AND VALIDATION PHASES OF ANN MODELING

N U D M
[rev/min] [kV] [kg/h] [g]
LEARNING
60 26 6 78.73
60 26 9 57.54
60 27 7.5 77.73
60 27 10.5 48.05
60 30 9 69.10
70 26 7.5 72.93
70 26 10.5 46.08
70 27 6 90.52
70 27 9 63.86
80 26 6 80.83
80 26 12 40.75
80 27 7.5 81.60
80 27 10.5 54.06
90 26 7.5 73.01
90 26 10.5 40.06
90 27 6 83.60
90 27 9 67.33
100 26 9 60.89
100 27 7.5 74.76
100 27 10.5 45.15
100 28 6 83.37
VALIDATION

70 27 75 81.55
70 27 105 50.81
70 29 7.5 87.52
70 29 10.5 62.78
90 27 7.5 78.89
90 27 10.5 48.88
90 29 7.5 81.80
90 29 10.5 70.18
70 27 7.5 81.55
70 27 10.5 50.81

87.52




