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
    Abstract -- The aim of this work is the development of a 

procedure for the optimization of electrostatic separation 

processes using artificial neural networks (ANN) in association 

with genetic algorithms. The objective was to maximize the 

insulation product, the control variables being the high-voltage 

that supplies the electrodes system and the rotation speed of the 

roll electrode. The ANN model is compared with that obtained 

using the classical experimental design methodology. The 

predicted optimum is confirmed by experiment. 
 

Index Terms—electrostatic separator, artificial neural 

networks, genetic algorithms.  

I.   INTRODUCTION 

The roll-type corona-electrostatic separator [1-3] 

represents the most advantageous technique used in industry 

for the separation of conductive and nonconductive particles 

from granular mixtures [4]. In most applications the operation 

of the electrostatic separator is controlled by the high-voltage 

applied to the corona electrode and the speed of the grounded 

roll electrode. To increase the quality of separation, the 

adjustment of these control variables is done by examining 

their effects on response of the process [5-7]. Due to the 

complexity of the many interacting phenomena, an accurate 

physical model of the separator is impossible to build. This is 

why in previous works empirical models have been derived 

using experimental design methodology [8-10].  

Such models enable the optimization of the process and 

can be employed in conjunction with fuzzy logic or genetic 

algorithms as tools for controlling the operation of the 

separators [11, 12]. It is obvious that the effectiveness of such 

approaches is strongly related to the accuracy of the available 

models and, in the case of fuzzy logic control [13], to the 

quality of the expert knowledge. 

The aim of the present paper is to point out that the 

artificial neural network (ANN) techniques can accurately 

model the electrostatic separation, so that to facilitate the 

optimization of the process by the use of genetic algorithms. 

II.   EXPERIMENTAL MODELLING   

The experimental design methodology [14. 15] is 

subsequently used to derive a model that can predict the 

outcome of a standard roll-type corona-electrostatic 

separation process (i.e., the mass of the insulating product) as 

a function y of n input (control) variables xi : 
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where ai (i = 1...3) designate the coefficients of the 

mathematical model. 

 In the present work, n = 3 and the control variables were 

the following: 

- Roll-speed N (rev/min); 

- High-voltage applied to the electrode corona U (kV); 

- Feed-rate D (kg/h).  

The experimental domain was set based on the results of 

previous studies carried out on a similar process [10]: 

60 rev/min  ≤  N  ≤  100 tr/min (2) 

  26 kV   ≤  U  ≤  30 kV (3) 

  6 kg/h  ≤  D  ≤  12 kg/h (4) 

The ai coefficients were determined from the results of a 

central composite faced experimental design (Fig. 1, 

Appendix 1). The recovery of PVC granules (mPVC) was 

considered to be the response y of the process of interest to 

this study. For each experiment mPVC was determined as the 

ratio between the mass of the PVC particles recovered in the 

“insulating material” compartment of the collector and the 

mass of PVC in the feed. The model obtained after processing 

the experimental data with the software MODDE 5.0 [16]:  

mPVC [%] = 69.73+2.81n +4.65u  – 9.74d -1.76nu +    
6.78nd + 1.77ud 

(5) 

where u, n and d represent the normalized centered values of 
the control (input) variables U, N and D. 

Fig.1: Schematic representation of the central composite faced (CCF) 
experimental design. 
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Fig. 2 represents the response the process mPVC = y(N,U) at 

fixed feed-rate D = 6 kg/h. The model is characterized by a 

high prediction error (Fig. 3), which points out the incapacity 

of the “linear-interaction” model (2) to reflect the outcome of 

the process.  

III.   ARTIFICIAL NEURAL NETWORK MODELING 

The artificial neural network (ANN) [17] is composed of 

several calculating units referred to as neurons. Connections 

between neurons in the network are characterized by 

numerical values called connection weights. A “learning” 

phase is necessary to determine the weights of the various 

connections in the network, based on the available 

experimental data. As a general rule, the data are divided into 

two sets: one will serve for learning, the other for the 

validation of the model. The learning set should include data 

over the entire operating range. The validation set is different 

from the previous one and is used to test the response of the 

network in the other experimental points. For selecting the 

sizes of the different data sets, a reasonable choice is to take 

65% of the entire data set for training and 35% for validation. 

 
Currently, there exist more than 50 types ANNs used in 

various industry applications [17, 18]. The feed-forward 
network employed in the present study consists of four layers: 
an input layer, two hidden layers and an output layer; it 
receives external signals and propagates them through all the 
layers to obtain the “output” of the ANN. There are no 
feedback connections between layers. The choice of this 
structure is based on Kolmogorov's theorem [19. 20] that 
encourages the use of this type of structure in modeling of the 
nonlinear systems. According to this theorem, continuous 
functions of multiple variables can be approximated by the 
superposition of several continuous functions of one variable, 
such as the sigmoid functions [21]:  
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There is no unanimously-accepted rule to establish the 

number of hidden layers and the number of neurons used in 

each layer for a given problem [18]. In spite of the fact that 

some researchers demonstrated the universal approximation 

capabilities of a feed-forward ANN with two hidden layers 

[20], the best structure for a given application is most often 

decided by applying a test and error strategy.      

During the learning phase. the weights of connections 

within the network are calculated such as to minimize the 

difference “e” between the measured values  of the process 

response and predicted values predicted by the network: 
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with: y  -  the vector of the measured values; 

 ŷ -  the vector of the ANN-predicted values; 

  N – the number of experiments used for learning  

Of the several algorithms specifically-developed for this 

operation [17], two have been tested in this study: 

1- The standard back propagation algorithm that uses the 

gradient method for the optimization of the connection 

weights within the network [22, 23]. 

2-     The Bayesian regularization process that uses the 

algorithm of Levenberg-Marquardt [24]. 
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Fig.3. Prediction error of the model established by the method of the 

experimental design. Mean square error =153.85 
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N [rev/min]  U [kV]  
Fig.2. Model established by experimental designs (3); Dependence of PVC 

on N and U for a D = 6 kg/h; "● Experimental data" 

Fig.4: Feed forward artificial neural network for the modeling of the 
electrostatic separation process. 

 



  

 

 
 

 

 

 

 

 

 

 

 

 
Fig. 6.  Prediction error of the model represented in Fig. 5. 

 Mean square error = 0.00109 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Generalization error of the model represented in Fig. 5. 

Mean square error = 172.09 

 

The application of the back propagation algorithm to an 

ANN having two hidden layers, each containing 6 neurons 

represented by sigmoid functions, has conducted to a model 

the response surface of which is given in Fig. 5. The model is 

characterized by a good predictive accuracy but an 

unacceptable high error of generalization [23] (Figs. 5 to 7). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Prediction error of the model represented in Fig. 8. 

Mean square error =1.008 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig.10. Generalization error of the model represented in Fig. 8. 

 Mean square error =17.839 

 

The model obtained with the Bayesian regularization process 

on same architecture and for the same experimental points can 

be examined in Fig. 8. The prediction error is lower than the 

measurement error 1.2% in the center of the domain (Fig. 9), 

but the generalization error is still unacceptably high (Fig. 

10). 
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Fig. 8. Model of PVC recovery as function of N and U for a D = 6kg/h, 
established from the CCF experimental design;  the weights of connections 

between neurons are determined by the Bayesian regularization algorithm. 
 ● Experimental data 

U [kV]  N [tr/min]  
 

Fig. 5. Model of PVC recovery as function of N and U for a D = 6kg/h, 
established from the CCF experimental design;  the weights of connections 

between neurons are determined by the back propagation algorithm. 
 ● Experimental data 
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Fig. 12. Model of PVC recovery as function of N and U for a D = 6 kg/h, 
established from the new experimental design (71 experimental points);   

the weights of connections between neurons are determined by a Bayesian 
regularization process. ● Experimental data 

 
To diminish the generalization error of the model, 

additional experiments have been carried out, in order to 
provide to the ANN more information on the behavior of the 
electrostatic separator. The distribution of the experimental 
points employed in the learning and validation phase is 
represented in the Fig. 11. By exploiting the new information, 
it was possible to obtain a model (Fig. 12) characterized by a 
mean prediction error of 0.18% and a mean generalization 
error of 0.43% (Figs.13 and 14). 

IV.   PROCESS OPTIMIZATION  

The ANN model can serve to determine the point of 
optimal operation of the electrostatic separator, by making 
use of the method of genetic algorithms (GA). This method 
employs a population of individuals (Fig. 15), represented as 
strings of binary characters, which undergo selection, in the 
presence of variation-inducing operators such as 
reproduction, recombination (crossover), and mutation. A 
fitness function is used to evaluate individuals. Reproductive 
success of the individuals varies with fitness. In every 
generation, a new set of individuals (strings) is created by 
using bits and pieces (chromosomes) from the fittest of the 
old [25].  

 

 
individual 

Phenotype 

N  [tr/min] U [kV] 

↕ ↕ 

Gene 01 Gene 02 

Genotype « Chromosome » 

Fig. 15. Representation of the structure of an individual 

 

Reproduction is a process by which individual strings are 

copied according to their fitness values. Copying strings 

according to their fitness values means that strings with higher 

values have a higher probability of contributing one or more 

offspring in the next generation. Crossover is an important 

operator of GA, as it produces two new individuals 

(“children”) by recombining the chromosomes of two 

“parents”. However, recombination does not create any new 

genetic material in the population. Mutation is the operator 

capable of overcoming this shortcoming. It involves the 

alteration of one individual to produce a single new solution.  

Fig. 11. Distribution of the experimental points in the domain of the 
study; ● learning data; ● validation data 
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Fig. 14. Generalization error of the model established by the AAN 
method from 71 experiments (model represented in Fig. 12).  

Mean square error = 0.3227 
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Fig. 13. Prediction error of the model established by the AAN method 

from 71 experiments (model represented in Fig. 12).  
Mean square error = 0.074 
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To correlate the GA and the function to be optimized, the 

variables of the phenotype must be quantified and then 

binary-coded, using Gray code. The number of bits depends 

on the number of levels of quantification chosen by the user. 

For the present application, 6 bits were used for each factor, 

giving the possibility of quantifying the two factors in 2
6
 -1 = 

63 levels, corresponding to a resolution of 0.064 kV for the 

voltage, and 0.0635 rev/min for the roll speed.  

The structural parameters of the GA genetic algorithm were 

chosen as recommended in [21] and are given in Table I. To 

increase the performance of the algorithm the proportional 

selection strategy (RWS) was adopted for the selection phase, 

and the elitist strategy (which keeps intact the best 

chromosomes in moving from one generation to another) in 

the reproductive phase (crossover and mutation).  

 
TABLE  I. PARAMETERS OF THE GENETIC ALGORITHM  

Type of coding Gray code 

Initialization Random 

Type of selection Proportional 

Type of crossing Two-point 

Size of individual 12 bits 

Population size 100 

Crossover probability  0.95 

Renewal rate 0.6 

Mutation probability  0.015 

 
Fig.15 shows the evolution of a population of 100 

individuals for 20 generations. The optimal solution is 

optimal (N; U) = (72.06 rev/min; 28.35 kV). Recovery 

estimated in this case is mPVC  = 97.34%.  In an experiment 

conducted at (N; U) = (72 rev/min; 28.3 kV), the PVC 

recovery was mPVC  = 97.25%, very close to the predicted 

value.  

V.   CONCLUSIONS 

The success of the control an electrostatic separation 

depends on the quality of the model exploited by the 

optimization algorithm. The use of the models of weak 

qualities, like the one obtained with the experimental design 

methodology can be misleading and generate a reduction in 

the performances. 

The model established by ANN presented an error of 

prediction and generalization lower than the error of 

measurement. In association with GA, it enabled the 

determination of the optimal values of the control variables 

(roll speed en high-voltage), for maximizing the recovery of 

the insulating material contained in the feed. This model is 

expected to be useful for the optimal control of the 

electrostatic separation process.  
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APPENDIX I 

 MASS OF THE PVC PRODUCTS OBTAINED BY CCF EXPERIMENTAL DESIGN 

N U D M 

[rev/min] [kV] [kg/h] [g] 

60 26 6 78.73 

100 26 6 74.39 

60 30 6 87.62 

100 30 6 75.25 

60 26 12 43.15 

100 26 12 19.48 

60 30 12 58.12 

100 30 12 73.87 

60 28 9 66.89 

100 28 9 74.17 

80 26 9 62.68 

80 30 9 75.49 

80 28 6 94.11 

80 28 12 57.98 

80 28 9 73.30 

60 26 6 78.73 

100 26 6 74.39 

 
APPENDIX II 

 MASS OF THE PVC PRODUCTS OBTAINED BY ADDITIONAL EXPERIMENTS 

DURING THE LEARNING AND VALIDATION PHASES OF ANN MODELING 

N U D M 
[rev/min] [kV] [kg/h] [g] 

 LEARNING   

60 26 6 78.73 
60 26 9 57.54 
60 27 7.5 77.73 
60 27 10.5 48.05 
60 30 9 69.10 

70 26 7.5 72.93 

70 26 10.5 46.08 
70 27 6 90.52 

70 27 9 63.86 

80 26 6 80.83 
80 26 12 40.75 
80 27 7.5 81.60 

80 27 10.5 54.06 
90 26 7.5 73.01 

90 26 10.5 40.06 

90 27 6 83.60 
90 27 9 67.33 

100 26 9 60.89 
100 27 7.5 74.76 
100 27 10.5 45.15 
100 28 6 83.37 

 VALIDATION   

70 27 7 5 81.55 
70 27 10 5 50.81 

70 29 7.5 87.52 
70 29 10.5 62.78 
90 27 7.5 78.89 
90 27 10.5 48.88 
90 29 7.5 81.80 
90 29 10.5 70.18 
70 27 7.5 81.55 
70 27 10.5 50.81 
70 29 7.5 87.52 

 


