
ECT sensor design using machine learning
techniques

Y. Oussar, C. Margo and J. Lucas
LPEM, UMR8213
ESPCI-ParisTech

10 Rue Vauquelin, 75005 Paris, France

S. Holé
LPEM, UMR8213

UPMC-Sorbonne Universités
10 Rue Vauquelin, 75005 Paris, France

Abstract—Within the framework of image reconstruction
by Electrical Capacitance Tomography (ECT) sensing, we
investigate the relevance of the sensor structure embodied
in both the number and the size of the electrodes. While
most of the studies in the literature exhibit sensors with
an assumed arbitrary structure, we consider that these two
properties possess a significant impact on the sensor perfor-
mances. In our study, the emphasis is about the detection
of a single bubble with random size and position. We
propose to determine the architecture of the sensor that
leads to the most accurate image reconstruction. To achieve
this objective, we propose to determine the image from a
set of independent measurements using LS-SVM models
selected with a sophisticated validation method. Indeed, this
way to proceed ensures a faster image computation than
inverting an underdetermined set of linear equations. By
doing so, the computational burden is reduced since it leads
to a direct calculation instead of an iterative optimization.
Various numerical experiments are presented and discussed.
They show the effectiveness of our assumption.

I. INTRODUCTION

Electrical Capacitance Tomography (ECT) is a well-
known and a widely used sensing technique. Generally,
an ECT sensor is formed by a set of electrodes arranged
circularly. The sensing technique is founded on measur-
ing the electrical capacitances appearing between all the
possible couples of electrodes. Typically, an ECT sensor
can be used to inform about the spatial configuration
(size, position) of a non-conducting material which per-
mittivity is different from the one of the environment.

The image of a cross-section of the environment of in-
terest can be obtained using the available measurements.
Usually, the image pixels correspond to nodes from
a spatial discretization scheme that involves a linear
knowledge-based model. This model describes the rela-
tionship between the measurements and the permittivity
at each node. The more the space discretization grid is
fine, the better the image resolution. Constructing the
image leads to invert an underdetermined set of linear
equations [1].

The literature dedicated to ECT sensors presents var-
ious applications. While both the number and the size
of electrodes have great importance regarding the sensor
performances, they are usually set arbitrarily and seldom
discussed [2]. Except for few works [3], the overall in-

dependent measurements are readily taken into account.
One can wonder if all the measurements are relevant or
just few of them are sufficient to achieve the best image
reconstruction given the sensor structure. Moreover, one
might ask: what should be the optimal structure of the
sensor for a given application?

In the present study, we propose to pay attention to
the design of ECT sensors. We assume that tuning the
number and the size of electrodes allows to optimize
the sensor performances for a given application. More
precisely, we are interested in determining the sensor
architecture that best predicts the size and the position
of a bubble lying in the sensor environment. To achieve
this goal, we propose to implement non linear black
box models using LS-SVM to establish the relationship
between the sensor measurements and the bubble size
and position.

II. ECT SENSOR AND PROBLEM STATEMENT

Figure 1 illustrates the structure of a typical ECT
sensor considered in this study. It is formed by eight
electrodes arranged circularly. The environment delim-
ited by the sensor is characterized by a permittivity ε1. In
Figure 1, the gap between electrodes is relatively small.
This may not be always the case since the size and the
number of electrodes have a significant impact on the
sensor performances.
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Figure 1. An 8-electrode ECT sensor

From the electrical point of view, each electrode can be
polarized independently. When electrode i is polarized,
the measurement of the charges on electrode j allows
the capacitance Cij between these two electrodes to be
determined. Due to the circular symmetry of the ECT



sensor, there are at most S = 1
2 P (P − 1) independent

capacities for a given P-electrode sensor.
In the present study, we are interested in optimizing

the structure of ECT sensors for image reconstruction by
setting the number and the size of the electrodes to their
optimal values for a given sensing task. We assume that
an ECT sensor is fully defined by giving the number and
the size of the electrodes. Indeed, this couple sets the
complete sensor structure. The basic motivation for this
study is to lead to the most accurate and computationally
cost effective image reconstruction.

We consider that a non conducting single bubble with
permittivity ε2 lies in the closed region circumscribed by
the sensor electrodes. This bubble has unknown size and
position respectively pointed by its radius R and its coor-
dinates x and y. Hence, according to this formulation, the
image reconstruction consists in estimating as accurately
as possible both the bubble radius and coordinates.

Instead of dealing with an image reconstruction
founded on inverting an undetermined set of equations,
we assume that a black-box inverse model that predicts
the size and the position of the bubble exists and can
be trained using data generated by numerical experi-
ments. This approach allows an almost instantaneous
image reconstruction which makes it highly attractive
for a real-time implementation. The black-box models
are implemented using the LS-SVM technique.

III. TRAINING AND VALIDATING LS-SVM MODELS

A. LS-SVM model description

In spite of several and efficient techniques for non
linear static modeling, such as neural networks, Least
Square Support Vector Machines (LS-SVM) are attractive
candidates thanks to various interesting properties: they
are linear-in-their-parameters models, their training al-
gorithm consists in a quadratic minimization and they
have a built-in regularization mechanism [4]. As a result,
these properties confer to them the ability to build
models with high generalization capabilities by avoiding
overfitting and controlling model complexity. Given a set
D formed by N measurements of S variables and a scalar
z: D =

{

(ti, zi) ∈ RS × R, i = 1, ...N
}

, we are interested
in nonlinear models of the form:

ẑ = w
T

ϕ (t) + b (1)

where t is the vector of input variables, ẑ is the model
output, w and b are unknown parameters and φ(·),
usually introduced by a kernel function, is a nonlinear
mapping from the original feature space to a high di-
mensional feature space. The LS-SVM training procedure
consists in minimizing the cost function defined by:

J (w, e) =
1

2
‖w‖2 + C

N

∑
i=1

ei (2)

subject to the equality constraints ei = zi − ẑi with
ei the prediction error taking into account the target
output zi and the predicted output ẑi. N is the size of
the training set and C is the regularization parameter.
This optimization problem can be cast into a dual form
with unknown parameters α and b, α being the vector
of the Lagrange multipliers [5]. The parameters can be
computed by resolving the following system of linear
equations:

[

K + 1
2C IN 1N

1T
N 0

] [

α

b

]

=

[

z
0

]

(3)

with 1N = [1, 1, ..., 1]T , α = [α1, α2, ..., αN ]
T and In is

the identity matrix. K is the kernel matrix: its component
kij is defined as the dot product between the φ(ti) and
the φ(tj) mappings. In our study, we use the gaussian
kernel function. It introduces an additional parameter σ#
which is its standard deviation. Parameters σ# and C are
called the hyperparameters of the LS-SVM model. Their
values can be optimized using a validation procedure.
Hence, the expression of the model becomes:

ẑ =
N

∑
i=1

αiK (ti, t) + b (4)

where α and b are the solutions of the system given by
(3).

B. LS-SVM model selection procedure

Since LS-SVM models are linear in their parameters
models, the solution of the training phase is unique
and can be computed straightforwardly using the set of
linear equations given by relation 3. This holds when the
hyperparameters C and σ# are known with fixed values.
Usually, these hyperparameters are unknown and must
be computed prior to the training phase. A suitable
way to proceed consists in selecting the couple (C, σ#)
that best validates the LS-SVM model. In practice, the
generalization capabilities of such black box model are
estimated by computing the validation error. Various
validation techniques exist in the literature [6]. The most
popular techniques are probably the cross validation
method and the Leave-One-Out (LOO) technique. Since
a fine search is desirable to best optimize the model
performance, the computational burden can rapidly be-
come untractable when using either methods. In order
to reduce substantially the computational time of the
selection procedure without compromising its efficiency,
we propose to estimate the validation error using the
Virtual Leave-One-Out (VLOO) method. This method,
first proposed for linear models [7] and later extended
to nonlinear models [8], allows an estimation of the
validation error to be computed by performing only
one training involving the whole available data. This
estimation is exact when dealing with linear-in-their-
parameters models, such as LS-SVM models, while it



remains an approximation for models which are non-
linear with respect to their parameters. More recently,
a framework was described [9] to implement the VLOO
method for LS-SVM models. For a given LS-SVM model,
the VLOO error is computed as:

VLOO =

√

√

√

√

1

N

N

∑
i=1

{

αi

(M−1)ii

}2

(5)

where N is the size of the training set, and (M−1)ii is
the i-th diagonal element of the inverse of matrix M
that appears in relation 3. Thus, the VLOO permits a
fast and exact estimation of the validation error which
consists in a great benefit when optimizing the values of
the hyperparameters according to a grid search.

IV. OPTIMAL SENSOR ARCHITECTURE FOR ONE-BUBBLE

DETECTION

Whereas the number of electrodes is a discrete value
beginning from 2 and going typically to few units, their
size is a continuous value. As a result, investigating the
influence of electrode size can lead to a large number
of cases to study while evaluating the influence of the
number of electrodes is more straightforward. However,
various numerical experiments showed that it is conve-
nient to express the electrodes size as a ratio of the sensor
perimeter they cover and that three types of electrodes
size must be distinguished: pinpoint, contiguous and
intermediate size electrodes.

• Pinpoint electrodes: they cover a very small ratio of
the sensor perimeter, typically 1%

• Contiguous electrodes: they cover the major sensor
perimeter, typically 99%

• Intermediate size electrodes: they cover any other
ratio of the sensor perimeter. We considered three
values: 25%, 50% and 75%

Basically, there are three models: each of them predicts
a component of the triplet (x, y, R). The search of
the optimal sensor architecture leads to a combinatorial
optimization. We proceed according to a grid search by
considering all the sensors with a number of electrodes
in {2, 3, 4, 5, 6} and electrodes size in {1%, 25%, 50%,
75%, 99%}. To generate the data, we intend to detect air
bubbles with relative permittivity ε2 = 1 in an oil flow
having a relative permittivity ε1 = 3. For each given
sensor, a set of data dedicated to training and validation
is generated. It is formed by 500 examples. Each example
is computed by considering a bubble with both random
radius and coordinates. We implement a knowledge-
based model that allows to compute the capacitances be-
tween the sensor electrodes given a spatial configuration.
Since the knowledge-based model is a set of differential
equations, its implementation is performed using a finite
elements modeling approach with the Gmsh software
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Figure 2. VLOO error for predicting radius R (top), coordinate x
(middle) and coordinate y (bottom).

[10] as a mesh generator and the GetDP software [11] as
a solver.

A first attempt to build inverse models to predict
bubbles configuration with a linear LS-SVM leads to
poor generalization capabilities. Therefore, the use of
nonlinear models is necessary.

Figure 2 illustrates the main result of our study. It
shows the validation error for the prediction of radius R
(top graph), coordinate x (middle graph) and coordinate
y (bottom graph). Obviously, a 2-electrode sensor is



not satisfactory to predict the bubble configuration: it
provides only 1 measurement while there are 3 unknown
parameters. Beginning from 3 electrodes, all the sensors
provide enough information to estimate accurately the
bubble size and position with some differences depend-
ing on electrodes size.

Regarding the coordinates x and y, a deeper analysis
of the results shows that the most accurate model is
obtained with 3 electrodes of intermediate size 50%. The
VLOO error computed using relation 5 is less than 3%
of the sensor radius. Increasing the number of electrodes
leads systematically to worse models. For intermediate
size electrodes, the error increases almost monotonically.
However, the behavior of sensors with contiguous elec-
trodes is quite different. At least 5 electrodes are required
to achieve a satisfactory prediction accuracy. A physical
explanation can be found in the penetration of the elec-
tric field in the sensor. Contrarily to intermediate size
electrodes, and with contiguous electrodes, the electric
field is indeed concentrated at the junction of electrodes.
Therefore, the impact of the bubble on measurements is
limited.

Predicting the bubble size is clearly less critical than
the bubble coordinates. A 2-electrode sensor of inter-
mediate size 50% allows to predict radius R with an
error less than 1% of the sensor radius. Similarly to
the coordinates, the radius prediction with a contiguous
electrodes sensor requires at least 5 electrodes.

V. CONCLUSION

This study was dedicated to investigate the influence
of both the number and the size of an ECT sensor elec-
trodes on its performances. Our goal was to determine
the optimal sensor structure for a given application. We
have implemented LS-SVM models validated by a so-
phisticated procedure to build nonlinear inverse models
that predict the size and the position of a single bubble
using independent measurements.

Regarding the number of electrodes, our results show
that increasing this parameter do not lead systematically
to an improvement of the sensor performances. The
best accuracy is achieved with a sensor formed by 3
electrodes. This result is counterintuitive.

Albeit to a lesser extent, the electrodes size also has an
impact on the sensor performances. The most accurate
sensor we obtained uses intermediate size electrodes that
occupy 50% of the sensor perimeter. The overall results
show that the sensor performances are roughly stable
with pinpoint or intermediate size electrodes (between
25% and 75% of the sensor perimeter). However, the use
of contiguous electrodes necessitates the involvement of
more electrodes to achieve satisfactory performances.

The main result of our study: the use of a 3-electrode
sensor, associated to an image reconstruction via a direct
calculation for a single bubble localization and sizing,
leads to a computational cost effective sensing approach.

This makes it highly attractive for real-time implemen-
tations.
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