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Abstract—The Electric Curtain (EC) consists of a series of
parallel electrodes embedded in a dielectric surface driven by a
multiphase alternating electric (AC) voltage source. The EC can
transport particles of a variety of materials, and it shows signifi-
cant promise for dust mitigation and separation applications with
charged particles. In this paper, we use a simple mathematical
model to demonstrate interesting chaotic behavior of the particles
in a EC field. We have identified multiple mode bifurcations
as well as the onset of chaotic dynamics of particle motion
based on analysis of phase-plane plots, bifurcation diagrams and
Poincaré sections. These bifurcations lead to abrupt changes
in particle transport properties, such as average translation
velocity and elevation height. It may be possible to utilizethis
information to better understand and control particle tran sport
and/or separation efficiency on the EC by manipulating key
physical parameters to trigger or avoid bifurcations. We have
further investigated some particle trajectories in phase space
when they are on the surface of the EC and briefly describe
some interesting behavior of the out-of-plane particle motion.

I. I NTRODUCTION

The Electric Curtain (EC) was patented in 1974 by Senichi
Masuda for particles position manipulation and containment
in an electrostatic powder painting application [1]. A simple
depiction of the EC is shown in Fig. 1. The EC is a series
of parallel electrodes that are often embedded in a dielectric
surface. A standing wave electric field can be created above
the surface by applying a multiphase AC power source to each
of the electrodes, and adjusting the phase of this power source
between neighboring electrodes to produce the desired wave
form. This technique’s primary advantage is its simplicity,
allowing variations in the electric field above the surface
by changing the phase difference between electrodes or the
waveforms of the AC voltage applied to them without having
to alter the physical apparatus. Whereas most methods for
particle transport or separation break down when the particles
become charged, the EC relies on particle charge for its
operation. The EC has been examined in the context of
many different applications. For example, it has been used
for separation of cells in solution [2], separation of different
types of by-products from agricultural processes [3], transport
of toner particles in photocopying machines [4], mitigation of
charged dust build-up for extra-terrestrial exploration of dusty
planets and moons [5], and separation of charged particles with

different charge-to-mass ratios using a variety of EC designs
[6].

The motion of particles on an electric curtain has been
studied both experimentally and computationally by a number
of investigators. [7]–[13] These investigations have indicated
that particles exhibit various different modes of motion onthe
electric curtain, and they have illustrated how each of these
modes produces net motion of the particles. While we use
a similar computational approach to some of these previous
papers, the current paper has a substantially different objective.
Namely, rather than focusing on the net particle motion, we
seek to examine the motion from a dynamical systems point of
view. With this approach we work to develop greater insight
into sudden changes in the nature of particle transport that
is sometimes observed in EC particle transport, such as the
intermittent changes in particle motion observed in a discrete-
element simulation of particle transport on an inclined EC
by Chesnutt and Marshall [14]. The onset of chaotic motion
of the particle is particularly of interest to us, given the
close relationship of chaotic motion and efficient mixing in
particulate and fluid systems [15].

II. METHODS

Three mathematical models were used by Masuda and
Kamimura [16] for determining the electrostatic field above
the EC surface. The calculations presented in this paper use
the so-called center line charge approximation, in which each
electrode is approximated as a thin wire. The electrostaticfield
is assumed to have a standing wave (2-phase) form, such that
the phase difference between adjacent electrodes is180◦. The
approximatex− andy−components of the electric field for a
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Fig. 1. Side view of electric curtain



2-phase EC are given by

Ex =
kQ

4πǫ0

1∑

n=0

sin(kx− nπ) cos(ωt− nπ)

cosh(ky)− cos(kx− nπ)
(1)

Ey =
kQ

4πǫ0

1∑

n=0

sinh(ky) cos(ωt− nπ)

cosh(ky)− cos(kx− nπ)
(2)

whereQ is the charge amplitude on an electrode,q and m
are the particle charge and mass, respectively,k is the wave
number, andω is the driving frequency [16]. In the cross-
sectional plane orthogonal to the electrode axis, thex− and
y−axes of a Cartesian coordinate system are parallel and
perpendicular to the dielectric surface, respectively.

In this initial investigation of bifurcations and chaotic dy-
namics of the particles on an EC, we have confined attention
to a highly simplified mathematical model of the particle
dynamics. Primarily we have looked at single particle motion
on the EC surface for the case where the particle rolls on the
dielectric surface of the EC. This one-dimensional (1D) model
offers the advantage of simple phase diagrams and system
analysis. We have also performed a preliminary investigation
of two-dimensional (2D) particle dynamics on the EC, for
which case the particle is allowed to rise off the dielectric
surface. In both cases, Poincaré sections are used to simplify
the phase space and search for underlying order. In the one-
dimensional case, we have also looked for the onset of chaos
through a sequence of period doubling.

Dissipative forces are included in both the one- and two-
dimensional models. For the 1D case, particles roll along the
dielectric surface, so the dissipative forces arise from both
rolling resistance and viscous fluid force (Stokes drag). Both of
these two forces are proportional to the particle velocity [17],
so they are combined into one term in the particle equations of
motion. In the 2D case, the particle is assumed to be levitated
with non-dissipative collisions with the dielectric surface, so
the only dissipation comes from fluid drag. The full differential
equations governing the particle’s trajectory are

d2x

dt2
+

β

m

dx

dt
=

1∑

n=0

J
sin(kx− nπ) cos(ωt− nπ)

cosh(ky)− cos(kx− nπ)
(3)

d2y

dt2
+

β

m

dy

dt
=

1∑

n=0

J
sinh(ky) cos(ωt− nπ)

cosh(ky)− cos(kx− nπ)
− g (4)

whereJ = kqQ/4mπǫ0 is called the interaction amplitude,β
is the damping coefficient,m is the particle’s mass, andg is the
acceleration due to gravity. In the computations presented, the
variables are non-dimensionalized to simplify the numerical
analysis. The non-dimensionalized variables and parameters
are expressed in terms of their dimensional counterparts as

t′ = ωt
x′ = kx
y′ = ky

j = k2qQ
4πǫ0m2ω2

g′ = gk
ω2

β′ = β
mω

The distance between neighboring electrodes is equal toπ
and the period of oscillation is equal to2π. The equations of
motion can then be written in dimensionless form as

d2x′

dt′2
+ β′

dx′

dt′
=

1∑

n=0

j
sin(x′ − nπ) cos(t′ − nπ)

cosh(y′)− cos(x′ − nπ)
(5)

d2y′

dt′2
+ β′

dy′

dt′
=

1∑

n=0

j
sinh(y′) cos(t′ − nπ)

cosh(y′)− cos(x′ − nπ)
− g′ (6)

For the 1D case, the value ofy′ in equations (5) and (6) is
set equal to the centroid position of the rolling particles.The
electric field approximation equations (1) and (2) use singular
(point) electrodes, and therefore only accurately represent a
physical system of cylindrical electrodes at a sufficientlyfar
distance from the electrodes. To insure that the electrodes
are considered far from the particles, the dielectric surface
is specified to lie at a distancey′ = 1 above the plane of
the array of electrodes. Various tests have found this to be
adequately far so that the point-electrode approximation is
well satisfied. Also, in the 1D study we need to consider
values of the parameterj for which the particles remain on
the surface, whereas for the 2D tests we wish to selectj such
that particles are levitated from the surface, with occasional
collisions. The critical value ofj at which particles transition
from 1D motion along the surface to 2D motion off of the
surface is determined by putting a particle directly above an
electrode with a repulsive interaction and solving for when
the electrostatic force balances the gravitational force.We
can use the non-dimesionalized equations if we solve for
the dimensionless ratioj/g′. This will give us a critical
relationship that will define the range ofj that the 1D model
is valid. The acceleration balance equation to be solved at the
surface directly above an electrode is

1∑

n=0

j
sinh(y′) cos(t′ − nπ)

cosh(y′)− cos(x′ − nπ)
= g′ (7)

For a particle located over the electrode atx′ = 0 the
expression simplifies to

j
2 cos(t′) cosh(y′)

cosh2(y′)− 1
= g′ (8)

Therefore the inequality

j

g′
≤

cosh2(y′)− 1

2 cos(t′) cosh(y′)
(9)

needs to be satisfied for the particle to remain on the surface.
The right hand side of the inequality is minimized when
cos(t′) = 1. Settingcos(t′) to its maximum value and setting
the location of the surface asy′ = 1 we find thatj/g′ ≈ 0.448
is the critical ratio that needs to be considered. For these
parameters the 1D model is valid ifj/g′ < 0.448. In light
of this critical relationship we have choseng′ such that this
criterion is satisfied for0 < j < 2. It follows that the 2D
model is appropriate for.j/g′ > 0.448 and in this paper we
report on interesting findings forj/g′ ≈ 3.06.



III. T HE ONE DIMENSIONAL ELECTRIC CURTAIN

The 2-phase EC has two fixed points in the electric field, one
located above each electrode. A particle placed directly above
an electrode in the 1D system therefore does not move even
as the field oscillates in time. The stability of the particleat
these locations oscillates with the field. When the charge ofthe
electrode has the same sign of as the particle, the fixed pointis
unstable because of the repulsion, whereas a particle abovean
electrode of the same sign charge lies in a stable fixed point.
Interestingly, chaotic motion is known to occur in systems that
have one stable and one unstable fixed point, which suggests
that the 1D EC may present interesting dynamics arising from
stability oscillation of these fixed points.

For purposes of analysis, it is convenient to express the
governing equation (3) for the 1D model as a set of first-
order autonomous differential equations. This can be done by
defining three variables,x1, x2, andx3, by x1 = x′, x2 = dx′

dt′
,

andx3 = t′. Equation (3) can then be expressed by

ẋ1 = x2

ẋ2 =

1∑

n=0

j
sin(k′x1 − nπ) cos(x3 − nπ)

cosh(k′y′)− cos(k′x− nπ)
− β′x2

ẋ3 = 1

(10)

When cast in this form, the periodic conditions in time and
space (x′) can be employed to represent the system dynamics
within a bounded region in phase space. In all test cases
reported for the 1D EC the damping coefficientβ′ is set equal
to 0.1 for simplicity.

A. Poincaré Sections

The trajectory (or orbit) of a particle in the three-
dimensional phase space is obtained by plotting the three
coordinatesx1, x2, and x3, as shown in Fig. 2. The orbit
of the particle in phase space is usually quite dense, and
it is not easy to discern much useful information about the
system dynamics directly from such a plot. Valuable insight
into the system dynamics can be gained by a Poincaré section,
which is simply a cross-section of the particle orbit in phase
space where we only plot the points for which the particle
trajectory is traveling in a specified direction through theplane.
Depending on the particular plane and direction selected the
shape of the Poincaré section may differ, but certain structural
characteristics of the system will tend to remain the same.

A Poincaŕe section of the orbit shown in Fig. 2 is obtained
by plotting a cross section perpendicular to the time axis
and parallel to the position and velocity axes. The orbit only
travels in one direction in time so we plot every intersection
of the orbit shown in Fig. 2 with the plane chosen, which
we arbitrarily put att = 0. The resulting Poincaŕe section is
shown in Fig. 3. The shape observed in Fig. 3 is an example
of a strange attractor. It is characteristic of chaotic systems
with underlying order. If one were to zoom in on a particular
part of the strange attractor, it would exhibit the propertyof
self similarity, such that the curve repeats itself on ever smaller
scales forming a fractal geometry. Associated with any strange

Fig. 2. A particle trajectory periodic in time and space withj = .272

Fig. 3. Poincaŕe section of trajectory shown in Fig. 2

attractor is a domain of attraction, which are the set of initial
conditions that result in a particle approaching an orbit lying
within the attractor. A nice feature of this example is that
experimentally this particular Poincaré section is easy to make
by simply taking a slice at one time throughout each period
of the driving frequency, which is the same thing as strobing
the system at the driving frequency and then recording the
particle velocity and position at each strobe instant. We hope
to verify some of our computations by doing just that. One of
the benefits of the 1D EC is the ability to view the full phase
space graphically. When we look at particle movement off the
surface we end up with 5 first-order autonomous equations.
We then have to carefully choose how to project and slice the
phase space to get useful information.

B. Bifurcations

One way to illustrate the system dynamics is with use of a
bifurcation diagram, in which the value of one variable (e.g.,
x′) on the Poincaŕe diagram is plotted as a function of a
system parameter (e.g.,j). For small values ofj (j < 0.207),
the Poincaŕe diagram consists of a single point, indicating
a periodic system with a single period, oscillating in phase
with the driving frequency. As the parameterj is varied, the



corresponding bifurcation plot appears as a single line as long
as the period stays in phase with the driving frequency. A
period doubling event occurs when the number of distinct
frequencies in the oscillations increases by a factor of two.
A bifurcation plot for the 1D EC system is shown in Fig. 4
for j in the interval0.200 < j < 0.221. A period doubling
event is found to occur atj ≈ 0.207, beyond which the
Poincaŕe diagram for the system oscillates between two points,
indicating two distinct system frequencies (or period-2 orbit).
A second period doubling occurs atj = 0.208, beyond
which the system is characterized by four distinct frequencies
(or period-4 orbit). In this second period doubling event the
periods appear to change in a discontinuous manner. The
period-4 orbit appears to undergo another period doubling
event atj = 0.210, but on closer inspection we find that
this is not the case. Instead, the particle trajectory is found
to remain a period-4 orbit, but as the value ofj changes the
orbits periods are found to discontinuously jump between two
sets of values, such that the resulting shape on the bifurcation
diagram appears as two dotted lines. Every blank spot in one
of these sets of lines coincides with a dot in the other set of
lines. Asj is made higher still, the system dynamics transitions
back to a period-2 orbit. The sudden jumps in period values
and number of periods exhibited by this bifurcation diagram
illustrates the very high level of sensitivity exhibited bythe
electric curtain to changes in system properties in terms ofthe
mode of particle transport.

The bifurcation diagram is plotted in Fig. 5 for the medium-
size interval0.190 < j < 0.275 and in Fig. 6 for the large
interval 0.190 < j < 1.700. In many systems that exhibit
period doubling behaviors, onset of chaos occurs following
a cascade of period doubling bifurcations that leads to an
infinite period orbit. While numerous period doubling events
are apparent in Figs. 4-6, the onset of chaos nevertheless seems
to appear quite suddenly nearj = 0.260 (Fig. 5). In Fig. 6, it
is shown that following a relatively short interval of chaotic
motion, the system again returns to a period-2 orbit, and than
at much higher values ofj (nearj = 1.495) the motion again
becomes chaotic.

IV. T WO DIMENSIONAL ELECTRIC CURTAIN

The 1D EC model loses validity when particles start to hop
off of the surface, which occurs for approximatelyj/g′ >
0.448 for the surface aty′ = 1. For the 2D system we include
gravity and we set the ratioj/g′ to 3.06 so we are in the
regime of out of plane motion. The particular parameters
we use for the work shown here arej = 0.3, g′ = 0.1,
β′ = 0.03. The phase space of the 2D system occupies a 5th
order space, which makes analysis considerably harder than
for the 1D model. There should be some regime in which the
particle leaves the surface but is close enough that the 1D
model approximates it. By looking for similarities in Poincaŕe
sections of the two models we hope to determine the full range
of j/g′ above0.448 for which the 1D model is appropriately
valid. We are currently working on defining this range in

Fig. 4. Bifurcation diagram for0.200 < j < 0.221

Fig. 5. Bifurcation diagram0.190 < j < 0.275

Fig. 6. Bifurcation diagram0.190 < j < 1.700

order to fully exploit the simplicity of the 1D model. This
information will be useful in future experimental comparisons.

Poincaŕe sections of the 2D EC computations are obtained
by plotting the particle positions at fixed time increments.
Results are shown in Figs 7 and 8. Thex′ velocity component



Fig. 7. A Poincaŕe section parallel to thex′, ẋ′ phase plane and perpendicular
to the time axis.

Fig. 8. A Poincaŕe section parallel to they′, ẏ′ phase plane and perpendicular
to the time axis.

is plotted against thex′ position of the particle in Fig. 7, and
the y′ velocity component is plotted against they′ position
of the particle in Fig. 8. In order to deal with the surface
discontinuity that would appear in Fig. 8, after bouncing from
the surface the particle motion is folded over the surface
position in constructing the Poincaré section. Hence, while
a bounced particle is actually located above the surface and
moving upward, it is plotted in Fig. 8 as having locations
below the dielectric surface with a downward velocity. The
particles initially exhibit transient behavior, but over long time
settle into a regular pattern characteristic of an attractor. The
transient behavior produces scattered points on the Poincaré
diagram, and the attractor yields points that form the closed
curves in Figs. 7 and 8. The boundary of the attractor appears
to fold back on itself at different intervals and to have a
complex shape.

V. CONCLUSION

A dynamical systems study of particle transport on an
electric curtain has been initiated, and some preliminary results
are reported for both 1D and 2D particle transport. With

use of bifurcation diagrams, we have shown that the system
undergoes a series of period doubling bifurcations, which in
some cases lead to intervals of chaotic dynamics and in other
cases reverts back to a simple finite period orbit. Poincaré
sections are plotted which illustrate the presence of strange
attractors in both 1D and 2D systems under chaotic transport
conditions. We hope to continue our research of the simple 2D
model, as well as to explore more complex cases with particle-
particle collisions and multiple particles sizes, with thehope
that by better understanding the dynamics of such systems we
will be better able to design electric curtain devices for optimal
particle transport, mixing and separation operations.
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