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Abstract—The Electric Curtain (EC) consists of a series of different charge-to-mass ratios using a variety of EC desig
parallel electrodes embedded in a dielectric surface drive by a  [g].

multiphase alternating electric (AC) voltage source. The E can 1o mgtion of particles on an electric curtain has been
transport particles of a variety of materials, and it shows ggnifi-

cant promise for dust mitigation and separation applicatims with ~ Studied both experimentally and computationally by a numbe
charged particles. In this paper, we use a simple mathematit  Of investigators. [7]-[13] These investigations have caded
model to demonstrate interesting chaotic behavior of the paicles  that particles exhibit various different modes of motiontba
in a EC field. We have identified multiple mode bifurcations glectric curtain, and they have illustrated how each ofghes

as well as the onset of chaotic dynamics of particle motion \,qeq hroduces net motion of the particles. While we use
based on analysis of phase-plane plots, bifurcation diagras and

Poincaré sections. These bifurcations lead to abrupt changes & Similar computational approach to some of these previous
in particle transport properties, such as average translabn papers, the current paper has a substantially differeettisg.
velocity and elevation height. It may be possible to utilizethis  Namely, rather than focusing on the net particle motion, we
information to t_)etter u_n_derstand and control partic_le transport  seek to examine the motion from a dynamical systems point of
and/or separation efficiency on the EC by manipulating key o\, With this approach we work to develop greater insight
physical parameters to trigger or avoid bifurcations. We have . . .
further investigated some particle trajectories in phase pace INt0 sudden changes in the nature of particle transport that
when they are on the surface of the EC and briefly describe iS sometimes observed in EC particle transport, such as the
some interesting behavior of the out-of-plane particle mdon. intermittent changes in particle motion observed in a @iser
element simulation of particle transport on an inclined EC
by Chesnutt and Marshall [14]. The onset of chaotic motion
The Electric Curtain (EC) was patented in 1974 by Senicbt the particle is particularly of interest to us, given the
Masuda for particles position manipulation and containtmeclose relationship of chaotic motion and efficient mixing in
in an electrostatic powder painting application [1]. A simp particulate and fluid systems [15].
depiction of the EC is shown in Fig. 1. The EC is a series
of parallel electrodes that are often embedded in a diétectr I[l. METHODS
surface. A standing wave electric field can be created abovel.
the surface by applying a multiphase AC power source to ea]gg
of the electrodes, and adjusting the phase of this poweceou

|I. INTRODUCTION

hree mathematical models were used by Masuda and
mimura [16] for determining the electrostatic field above
fhe EC surface. The calculations presented in this paper use

f This techniaue’ . dvant i its simplici ME so-called center line charge approximation, in whiathea
orm. This techhigues primary advantage 1s 1s SImpLCItyelectrode is approximated as a thin wire. The electrosfiatit
allowing variations in the electric field above the surfac

. . I3 assumed to have a standing wave (2-phase) form, such that
by changing the phase difference between electrodes or { phase difference between adjacent electrodesiis The

waveforms of the AC voltage applied to them without havin : ~ B -
to alter the physical apparatus. Whereas most methods %&proxmatec andy—components of the electric field for a

particle transport or separation break down when the pastic

become charged, the EC relies on particle charge for its Dielectric Surface

operation. The EC has been examined in the context of Tectrodes

many different applications. For example, it has been used g . ,
for separation of cells in solution [2], separation of difet |

types of by-products from agricultural processes [3], $paort P
of toner particles in photocopying machines [4], mitigatiof AC Power

charged dust build-up for extra-terrestrial exploratiérosty
planets and moons [5], and separation of charged partidtas w Fig. 1. Side view of electric curtain



2-phase EC are given by The distance between neighboring electrodes is equal to
and the period of oscillation is equal far. The equations of

Z sin(kz — nm) cos(wt — nr) (1) motion can then be written in dimensionless form as
471'60 cosh(ky) — cos(kx — nm)

d*x’ ﬁ dr’ i _sin(a’ — nr) cos(t’ — n) (5)
Z sinh(ky) cos(wt — nw) @ dat? dt’ n:oj cosh(y’) — cos(z’ — nm)
Ey = 47Teo cosh(ky) — cos(kx — nm)
d*y’ Ay’ L sinh(y’) cos(t’ — nm) ,
where @) is the charge amplitude on an electrogeand m dt2 ar z:;) cosh(y) — cos(@/ — nm) (6)

are the particle charge and mass, respectivelg the wave
number, andw is the driving frequency [16]. In the cross-For the 1D case, the value gf in equations (5) and (6) is
sectional plane orthogonal to the electrode axis,stheand set equal to the centroid position of the rolling particlébe
y—axes of a Cartesian coordinate system are parallel agléctric field approximation equations (1) and (2) use dagu
perpendicular to the dielectric surface, respectively. (point) electrodes, and therefore only accurately reprteae

In this initial investigation of bifurcations and chaotig-d physical system of cylindrical electrodes at a sufficieriély
namics of the particles on an EC, we have confined attentidistance from the electrodes. To insure that the electrodes
to a highly simplified mathematical model of the particl@re considered far from the particles, the dielectric serfa
dynamics. Primarily we have looked at single particle motiois specified to lie at a distancg = 1 above the plane of
on the EC surface for the case where the particle rolls on tihe array of electrodes. Various tests have found this to be
dielectric surface of the EC. This one-dimensional (1D) slodadequately far so that the point-electrode approximaton i
offers the advantage of simple phase diagrams and systerll satisfied. Also, in the 1D study we need to consider
analysis. We have also performed a preliminary investigati values of the parametgr for which the particles remain on
of two-dimensional (2D) particle dynamics on the EC, fothe surface, whereas for the 2D tests we wish to seglecich
which case the particle is allowed to rise off the dielectrithat particles are levitated from the surface, with ocaaeio
surface. In both cases, Poinéaections are used to simplify collisions. The critical value of at which particles transition
the phase space and search for underlying order. In the ofiem 1D motion along the surface to 2D motion off of the
dimensional case, we have also looked for the onset of chawsface is determined by putting a particle directly abomne a
through a sequence of period doubling. electrode with a repulsive interaction and solving for when

Dissipative forces are included in both the one- and twthe electrostatic force balances the gravitational foite.
dimensional models. For the 1D case, particles roll alorg tkan use the non-dimesionalized equations if we solve for
dielectric surface, so the dissipative forces arise frorthbothe dimensionless ratig/¢’. This will give us a critical
rolling resistance and viscous fluid force (Stokes dragjh®d relationship that will define the range gfthat the 1D model
these two forces are proportional to the particle velocify][ is valid. The acceleration balance equation to be solveleat t
so they are combined into one term in the particle equatibnssurface directly above an electrode is
motion. In the 2D case, the particle is assumed to be leditate 1 ) , ,
with non-dissipative collisions with the dielectric suréa so 3 sinh(y") cos(t’ —nw) g @)
the only dissipation comes from fluid drag. The full diffetiah "0 cosh(y’) — cos(z’ — nm)
equations governing the particle’s trajectory are

For a particle located over the electrode @t = 0 the

Bdx Z sin(kx — nm) cos(wt — nr) expression simplifies to
dt2 m dt r cosh(ky) — cos(kx — n) .2 cos(t’) cosh(y") ,
n= —2 = g (8)
cosh”(y') — 1

1 :
B dy Z 7 sinh(ky) cos(wt — n)

B 4 : .
dt2 p—— cosh(ky) — cos(kx — ) g (4) Therefore the inequality

. 20,
whereJ = kqQ/4mme, is called the interaction amplitudg, i, < M )
is the damping coefficienty is the particle’s mass, andis the g 2 cos(t") cosh(y’)
acceleration due to gravity. In the computations preserted needs to be satisfied for the particle to remain on the surface
variables are non-dimensionalized to simplify the nunaricThe right hand side of the inequality is minimized when
analysis. The non-dimensionalized variables and parameteos(t’) = 1. Settingcos(t’) to its maximum value and setting

are expressed in terms of their dimensional counterparts a§1e location of the surface as = 1 we find thatj /g’ ~ 0.448
is the critical ratio that needs to be considered. For these

V= wt j= M’f% parameters the 1D model is valid jf/g’ < 0.448. In light
' =kx g = gl;” of this critical relationship we have chosgh such that this
y' = ky 8 = “3 criterion is satisfied fol0 < j < 2. It follows that the 2D

model is appropriate forj /g’ > 0.448 and in this paper we
report on interesting findings for/g’ ~ 3.06.



IIl. THE ONE DIMENSIONAL ELECTRIC CURTAIN

The 2-phase EC has two fixed points in the electric field, one Full Phase Space
located above each electrode. A particle placed directhvab
an electrode in the 1D system therefore does not move even
as the field oscillates in time. The stability of the partiate
these locations oscillates with the field. When the chardgbef
electrode has the same sign of as the particle, the fixed jgoint
unstable because of the repulsion, whereas a particle @ove
electrode of the same sign charge lies in a stable fixed point.
Interestingly, chaotic motion is known to occur in systeimst t
have one stable and one unstable fixed point, which suggests
that the 1D EC may present interesting dynamics arising from
stability oscillation of these fixed points.

For purposes of analysis, it is convenient to express the
governing equation (3) for the 1D model as a set of first- Fig. 2. A particle trajectory periodic in time and space V\U‘th: 272
order autonomous differential equations. This can be dgne b

defining three variables;;, z2, andzs, by z; = 2/, 25 = ‘fi%, v
andxzs = t’. Equation (3) can then be expressed by ' . Time
y/
1 .
. _sin(k'zy — nr) cos(zg — n) , 02
= — 10 ‘

w2 Z] cosh(k'y’) — cos(k'z — nm) pe (10)

. - x' 00

I3 = 1
When cast in this form, the periodic conditions in time and -02
space £’) can be employed to represent the system dynamics 4
within a bounded region in phase space. In all test cases o
reported for the 1D EC the damping coefficighitis set equal

-0.6

to 0.1 for simplicity. 0 oo e 7

A. Poincaré Sections

The trajectory (or orbit) of a particle in the three-
dimensional phase space is obtained by plotting the three
coordinatesr, x2, and x3, as shown in Fig. 2. The orbit attractor is a domain of attraction, which are the set ofahit
of the particle in phase space is usually quite dense, agghditions that result in a particle approaching an orhitdy
it is not easy to discern much useful information about thgithin the attractor. A nice feature of this example is that
system dynamics directly from such a plot. Valuable insighkéxperimentally this particular Poineasection is easy to make
into the system dynamics can be gained by a Poifsaction, by simply taking a slice at one time throughout each period
which is simply a cross-section of the particle orbit in phasf the driving frequency, which is the same thing as strobing
space where we only plot the points for which the particihe system at the driving frequency and then recording the
trajectory is traveling in a specified direction through pitene. particle velocity and position at each strobe instant. Weeho
Depending on the particular plane and direction selected # verify some of our computations by doing just that. One of
shape of the Poincaisection may differ, but certain structuralthe benefits of the 1D EC is the ability to view the full phase
characteristics of the system will tend to remain the same. space graphically. When we look at particle movement off the

A Poincakg section of the orbit shown in Fig. 2 is obtainedsurface we end up with 5 first-order autonomous equations.
by plotting a cross section perpendicular to the time axige then have to carefully choose how to project and slice the
and parallel to the position and velocity axes. The orbityonphase space to get useful information.
travels in one direction in time so we plot every intersattio _ )
of the orbit shown in Fig. 2 with the plane chosen, whicf- Bifurcations
we arbitrarily put att = 0. The resulting Poincdrsection is  One way to illustrate the system dynamics is with use of a
shown in Fig. 3. The shape observed in Fig. 3 is an examgi#urcation diagram, in which the value of one variable (e.g
of a strange attractor. It is characteristic of chaotic eyt 2’) on the Poincat diagram is plotted as a function of a
with underlying order. If one were to zoom in on a particulasystem parameter (e.gy). For small values of (5 < 0.207),
part of the strange attractor, it would exhibit the propesty the Poincaf diagram consists of a single point, indicating
self similarity, such that the curve repeats itself on evealter a periodic system with a single period, oscillating in phase
scales forming a fractal geometry. Associated with anyngtea with the driving frequency. As the parametgis varied, the

Fig. 3. Poincaf section of trajectory shown in Fig. 2



corresponding bifurcation plot appears as a single lin@ag |

as the period stays in phase with the driving frequency. A " -
period doubling event occurs when the number of distinct 28
frequencies in the oscillations increases by a factor of. two 36 -~
A bifurcation plot for the 1D EC system is shown in Fig. 4 14
for j in the interval0.200 < j < 0.221. A period doubling x', —
event is found to occur aj ~ 0.207, beyond which the —<
Poincat diagram for the system oscillates between two points, 0 T
indicating two distinct system frequencies (or period-Bit)r 28 .
A second period doubling occurs gt = 0.208, beyond 26 b
which the system is characterized by four distinct freqiesnc va —_
(or period-4 orbit). In this second period doubling everd th .
periods appear to change in a discontinuous manner. The W o o oMo oas 00 02
period-4 orbit appears to undergo another period doubling J
event atj = 0.210, but on closer inspection we find that
this is not the case. Instead, the particle trajectory imfou Fig. 4. Bifurcation diagram f00.200 < j < 0.221
to remain a period-4 orbit, but as the valuejoEhanges the
orbits periods are found to discontinuously jump betweem tw ;
sets of values, such that the resulting shape on the bifarcat
diagram appears as two dotted lines. Every blank spot in one °
of these sets of lines coincides with a dot in the other set of 5
lines. Asj is made higher still, the system dynamics transitions .
back to a period-2 orbit. The sudden jumps in period values p =
and number of periods exhibited by this bifurcation diagram X -
illustrates the very high level of sensitivity exhibited bye 2 -
electric curtain to changes in system properties in ternthef
mode of particle transport. '
The bifurcation diagram is plotted in Fig. 5 for the medium- 0
size interval0.190 < j < 0.275 and in Fig. 6 for the large g s e e o .
interval 0.190 < j < 1.700. In many systems that exhibit .
period doubling behaviors, onset of chaos occurs following J

a cascade of period doubling bifurcations that leads to an
infinite period orbit. While numerous period doubling exent
are apparentin Figs. 4-6, the onset of chaos neverthelessse
to appear quite suddenly neae= 0.260 (Fig. 5). In Fig. 6, it 7
is shown that following a relatively short interval of chigot
motion, the system again returns to a period-2 orbit, and tha
at much higher values gof (nearj = 1.495) the motion again
becomes chaotic.

Fig. 5. Bifurcation diagran0.190 < j < 0.275

IV. Two DIMENSIONAL ELECTRIC CURTAIN

The 1D EC model loses validity when particles start to hop
off of the surface, which occurs for approximatelyg’ >
0.448 for the surface at/ = 1. For the 2D system we include
gravity and we set the ratig/¢’ to 3.06 so we are in the Y S Y S NS ey
regime of out of plane motion. The particular parameters j
we use for the work shown here afe= 0.3, ¢ = 0.1,

B’ = 0.03. The phase space of the 2D system occupies a 5th Fig. 6. Bifurcation diagran0.190 < j < 1.700

order space, which makes analysis considerably harder than

for the 1D model. There should be some regime in which the

particle leaves the surface but is close enough that the dRler to fully exploit the simplicity of the 1D model. This
model approximates it. By looking for similarities in Poaié information will be useful in future experimental comparis.
sections of the two models we hope to determine the full rangePoinca# sections of the 2D EC computations are obtained
of j/¢’ above0.448 for which the 1D model is appropriatelyby plotting the particle positions at fixed time increments.
valid. We are currently working on defining this range imResults are shown in Figs 7 and 8. THevelocity component
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use of bifurcation diagrams, we have shown that the system
undergoes a series of period doubling bifurcations, which i
some cases lead to intervals of chaotic dynamics and in other
cases reverts back to a simple finite period orbit. Poihcar
sections are plotted which illustrate the presence of ggan
attractors in both 1D and 2D systems under chaotic transport
conditions. We hope to continue our research of the simple 2D
model, as well as to explore more complex cases with padticle
particle collisions and multiple particles sizes, with thepe

that by better understanding the dynamics of such systems we
will be better able to design electric curtain devices fairopl
particle transport, mixing and separation operations.
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Fig. 7. A Poinca# section parallel to the’, 2’ phase plane and perpendicular
to the time axis.
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Fig. 8. A Poinca# section parallel to thg’, 3’ phase plane and perpendicular
to the time axis.

[9]
is plotted against the’ position of the particle in Fig. 7, and
the 3/ velocity component is plotted against tlyé position [10]
of the particle in Fig. 8. In order to deal with the surfac:lell]
discontinuity that would appear in Fig. 8, after bouncinanfir
the surface the particle motion is folded over the surfa¢&]
position in constructing the Poincasection. Hence, while 13
a bounced particle is actually located above the surface and
moving upward, it is plotted in Fig. 8 as having locations
below the dielectric surface with a downward velocity. ThE4
particles initially exhibit transient behavior, but ovenp time [15)
settle into a regular pattern characteristic of an attradtbe
transient behavior produces scattered points on the Ainca®!
diagram, and the attractor yields points that form the @ose
curves in Figs. 7 and 8. The boundary of the attractor appe&id
to fold back on itself at different intervals and to have a
complex shape.

V. CONCLUSION

A dynamical systems study of particle transport on an
electric curtain has been initiated, and some preliminesylts
are reported for both 1D and 2D particle transport. With
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