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Abstract—Electromagnetic forces provide us with various phenomena and mechanisms of 

key importance for multiple applications. Because of their importance, the key notions of elec-

tromagnetism should be elucidated with a maximum clarity. Among those notions of key im-

portance are the forces, energy, and entropy of metallic and polarizable substances. Yet, these 

key notions remain unclear and, as such, repeatedly trigger multiple discrepancies and hot 

debates (see, for instance, [1--4]) 

The simplest instrument of analysis of the resultant electrostatic forces acting on polarizable 

substances can be achieved with the help of the Kelvin’s formula: 
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where  is the electrostatic potential, P   is the polarization density, and the integration in (*) 

is taken over the whole polarized body.  Similar relation is often use in magnetostatics also. 

The elegant formula (*) is intuitively transparent and simple. Not surprisingly, it has become 

the "working horse" of multiple engineering applications and academic studies. It faces, how-

ever, some obstacles (see, the discussion in [4]). It was demonstrated more recently that it leads 

to some paradoxes of non-vanishing self-action [5,6]. We will discuss those paradoxes and show 

how they can be avoided based on the minimum energy approach.  
 

I. SELF-ACTION OF DISTRIBUTED CHARGES 

Consider a rigid body with distributed charges ( )q z  within a finite domain  sur-

rounded by electrically neutral space. Then, the electrostatic potential  is given by the 

bulk system: 
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amended with the boundary conditions 
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and decay condition at infinity 
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where [ ]a  denotes the jump in the enclosed quantity across the boundary of  .  

The ponderomotive force per unit volume is given by = -q f and the resulting net 

self-force F  upon the domain   is given by the integral = d


F f . It is easy to for-

mally show that this force vanishes, consistent with a wide range of commonly observed 

phenomena. Indeed, the resultant force F  is also be presented by the repeated integral 
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We can demonstrate with the help of (4) that the resultant force vanishes. Indeed, after 

a double change 
*i iz z in (4) we arrive at the relation  F F  which is equivalent 

to vanishing of the resultant force 

 

0F                                                              (5) 

 

One might say that validity of the relationship (5) is obvious straightforward based on 

the third Newton’s law, ingrained into the Coulon law of electrostatics. Alternatively, one 

can say that it is obvious from our everyday experience. If the relationship (5) were violated 

the rigid body with ingrained electric charges in it would be self-accelerating without any 

external forces whatsoever. These two arguments are very strong but insufficient. Indeed, 

the system of electrostatics (1) - (4), though motivated by the Coulon’s law includes also 

the procedure of homogenization. This procedure is no way obvious or straightforward. 

For instance, we are well aware that the electrostatic energy of the system of  the system 

discrete electric points charges can be positive or negative; for the same token, the electro-

static energy of a an isolated point charge is infinite. However, after the traditional homog-

enization of the Coulon law the electrostatic energy of any spatially limited distribution of 

charges with finite density is always positive. In other words, the electrostatics of discrete 

electric charges, from one hand, and the electrostatics of distributed charge have not only 

multiple common features but also some qualitative distinctions. Thus, the above proof of 

vanishing of the resultant force of the distributed charges is in no way redundant. 
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II. SELF-ACTION OF DISTRIBUTED DIPOLES AND THE KELVIN’S FORMULA 

 

Let us now consider a related problem in which the electric charge distribution ( )q z

is replaced with the electric dipole distribution ( )zP . The induced electrostatic potential 

  is governed by the system: 
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amended with the boundary conditions 
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and decay condition at infinity 
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The proper modeling of the resulting ponderomotive forces constitutes an important, 

challenging, and still-controversial open problem. A commonly accepted expression for 

the ponderomotive force per unit area is given by the Kelvin formula [7, p. 360], [8, p. 

388], [9, p. 99]: 

 
i
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and the resulting net force upon the domain   is given by  
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i= d d P
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   F f E                                     (10) 

We report that, unlike the force associated with a distribution of electrical charges and 

the vast experimental evidence, the force F  given in equation (10) does not vanish, except 

for a limited number of special cases, such as a spherically symmetric distribution or a 

constant distribution in elliptical domains. The striking disagreement with the experimental 

evidence is the essence of the paradox reported in this note. 

The non-vanishing self-force can be demonstrated in a number of ways. A detailed 

analytical derivation will be given in a forthcoming expanded paper. One of the simplest 

ways for computationally minded reader to see a convincing example is to compute a finite 

element solution for a spherical domain   with non-constant .field p , where the infinite 

surrounding space is approximated by a sufficiently large domain. 
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III. THERMODYNAMICALLY CONSISTENT APPROACH FOR DEFORMABLE DIELECTRICS 

 

Determination of the resultant force is sufficient when dealing with rigid bodies. When 

dealing with deformable bodies we ought to amend the equations of electrostatics with 

analogy of equations of elasticity in which ponderomotive forces are taken into account. 

Consider a deformable polarizable substance in a thermostat maintained at fixed tempera-

ture T . In what follows the parameter T  will be omitted from all the relationships. The 

free energy   per unit mass is given by the following formula 

 ( , )k

i jU P   , (11) 

where 
kP —the polarization vector, 

iU —the displacement vector. 

  This substance reacts on the external load by generating elastic strain i jU  and 

electric polarization .kP   

At the internal and external boundaries these vectors should satisfy the following bound-

ary conditions: 

   0



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and 
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where  the displacement 
iD  is as always 

 4i i iD E P  . (14) 

The bulk equations of the electrostatic and mechanical equilibrium read 
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and 
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where 
kf  is the distributed force density, and the Aleph tensor 

mk  is defined as follows: 
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For the elastic dielectrics the Aleph tensor 
mk plays the role of stress tensor. With this 

understanding, using the relationships (16), (17), one can prove that the resultant self-ac-

tion force vanishes.   

A detailed discussion of the Aleph tensor 
mk  can be found in [6]. 

IV. CONCLUSION 

In conclusion, we presented a paradox of non-vanishing self-force associated with the 

classical Kelvin formula (9) for ponderomotive forces in polarized substances. This shows 

that utmost care and advanced physical intuition should be used when utilizing (9), and 

especially (10). Furthermore, it is desirable to come up with a ponderomotive force theory 

that is free of the described contradiction. One possible approach, rooted in the thermody-

namic framework [2], [4], [6], will be proposed in the expanded paper. 
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