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Abstract— Electroencephalography (EEG) is the recording of electrical activity of brain 

cells caused by the electrostatic interactions of ions and molecules in the brain cells. It is 

useful to diagnose the normal or abnormal functionality of the brain. One of the abnormali-

ties of the brain is epilepsy, a chronic, non communicable disorder of the brain that affects 

people of all ages. Intracranial Electroencephalographic (iEEG) signals are multidimen-

sional, nonstationary, time domain biological signals obtained by electrodes placed on the 

subdural regions (below the parietal bone of head) of the patient, which are not reproduci-

ble. This signal consists of some useful information about behaviour of brain and pathologi-

cal conditions. In this work, classification of focal (epileptic) and non-focal (epileptic) iEEG 

signals is reported using wavelet transform and adaptive neuro fuzzy inference system 

(ANFIS). The iEEG signals recorded were subjected to wavelet transform (WT) and fea-

tures were extracted from the obtained wavelet coefficients. Further, the wavelet features 

were utilized to classify the iEEG signals using ANFIS, and the results shows maximum 

accuracy of 98.2%. Matlab software package was used for programming and analysis pur-

pose of classification. This study seems to be of high clinical relevance since this method is 

useful for ease in analysis and monitoring of iEEG of epileptic patients. 

 
Keywords—Intracranial EEG, Epilepsy, Wavelet transform, Adaptive neuro fuzzy inference sys-

tem. 

I. INTRODUCTION 

Human brain is most complex in its physiology and functions, in the same way diag-

nosis of abnormalities of brain is highly complex. Fig.1 shows a human brain and its 

parts [1, 2]. Reading of electrical actives of brain will be helpful in accessing brain func-

tionality and disorders. iEEG is one of the most important tool for diagnosis of various 

disorders including epilepsy. It is mostly preferred for highly complex disorders of brain 

since it is not affected by impedances skin and skull. 
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                       (a)                                                                                         (b) 

                            Fig.1. (a)Human rain and its parts [1] (b) acquisition of iEEG signals [2]. 

Epilepsy is a chronic, non communicable disorder of the brain that affects people of 

all ages. It is second most prevalent neurological disorder in humans after stroke. But in 

most of the cases, possible causes are unknown. Any abnormal pattern of neuronal activ-

ity, from brain illness to brain damage, can unfortunately lead to seizures. World health 

organization study says Around 50 million people worldwide have epilepsy. Nearly 80% 

of the people with epilepsy are found in developing regions [3]. The seizure occurs be-

cause of a sudden surge of electrical activity in the brain and does leads to a temporary 

disturbance in the messaging systems between brain cells. To analyze these disturbances 

and its characteristics Electroencephalography and intracranial electroencephalography 

(iEEG) proves to be the most useful tool. Most of the treatments for intractable seizures 

are very limited. The most critical involves focal resections of abnormal brain tissue 

when the epileptogenic region can be accurately defined [4]. This is a critical task that 

requires subdural EEG recordings of seizures to define their onset, electrodes of interest, 

and their region of involvement. iEEG is an invasive method, a craniotomy (a surgical 

incision into the skull) is required to implant the electrode grid [5].  

The main objective of the study is focused on classification of seizures offline, based 

on subdural EEG data that would satisfy high accuracy, sensitivity and specificity of 

classification. Since epileptic seizure occurrence is erratic and random it challenges the 

automation through reliable and computational efficient seizure detection. In this study 

work was carried out for classification of focal and non-focal iEEG signals were re-

ported using wavelet transform and adaptive neuro fuzzy inference system. Wavelet 

transform was chosen for analysis of iEEG data since literature studies shows good re-

sults in feature extraction and classification signals with high randomness. The pre rec-

orded iEEG signals from multi-channel EEG signal acquisitions were subjected to wave-

let transform and corresponding wavelet coefficients were extracted. Daubechies wavelet 

transform was used to obtain the wavelet coefficients of the selected signals. Further, the 

wavelet features were utilized to classify the iEEG signals using adaptive neuro-fuzzy 

inference system. 
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II. METHODOLOGY 

A. Data collection 

All iEEG signals acquired from the database, where signals are digitally band-pass 

filtered between 0.5 and150 Hz using a fourth-order Butterworth filter. Forward and 

backward filtering was used in order to minimize phase distortions. Those EEG signals 

that had been recorded with a sampling rate of 1024 Hz were down-sampled to 512 Hz 

prior to further analysis. EEG signals were then re-referenced against the median of all 

the channels free of permanent artifacts as judged by visual inspection. There is no ref-

erence that can be considered ―best‖ on general grounds. We randomly selected 160 

recorded signals x and y from the pool. The signals were divided into time windows of 

20 seconds, corresponding to 10240 samples in which 80 signals belong to focal cate-

gory and another 80 belong to non focal (non epileptic) category [6].  

B. Wavelet transform feature extraction 

The WT can be thought of as an extension of the classic Fourier transform, except 

that, instead of working on a single scale (time or frequency), it works on a multi-scale 

basis. This multi-scale feature of the WT allows the decomposition of a signal into a 

number of scales, each scale representing a particular coarseness of the signal under 

study [7]. The procedure of multiresolution decomposition of a signal x[n] in to different 

levels of decomposition D1-D5 and approximations A1-A5 is schematically shown in 

Fig. 2.  

 
Fig. 2: Subband decomposition of discrete wavelet transform implementation; g[n] is the high-pass filter, h[n] is the 

low-pass filter. 

The iEEG signals can be considered as a superposition of different structures occur-

ring on different time scales at different times. One purpose of wavelet analysis is to 

separate and sort these underlying structures of different time scales. Spectral analysis of 

the iEEG signals was performed using the discrete wavelet transform (DWT). Selection 

of appropriate wavelet and the number of decomposition levels is very important in 

analysis of signals using the WT. The number of decomposition levels is chosen based 

on the dominant frequency components of the signal. The levels are chosen such that 

those parts of the signal that correlates well with the frequencies required for classifica-

tion of the signal are retained in the wavelet coefficients. In the present study, the num-

ber of decomposition levels was chosen to be 5. Thus, the iEEG signals were decom-
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posed into the details D1–D5 and one final approximation, A5. Usually, tests are per-

formed with different types of wavelets and the one which gives maximum efficiency is 

selected for the particular application. The smoothing feature of the Daubechies wavelet 

of order 2 (db2) made it more suitable to detect changes of the iEEG signals. Therefore, 

the wavelet coefficients were computed using the db2 in the present study. The com-

puted wavelet coefficients provide a compact representation that shows the energy dis-

tribution of the signal in time and frequency.  

The computed detail and approximation wavelet coefficients of the iEEG signals 

were used as the feature vectors representing the signals. For each EEG segment, the 

detail wavelet coefficients (Dk, k = 1, 2, 3, 4, 5) at the first, second, third, fourth and 

fifth levels and the approximation wavelet coefficients (A5) at the fifth level were com-

puted. Then 10240 wavelet coefficients were obtained for each channel of iEEG signal. 

In order to reduce the dimensionality of the feature vectors, statistics over the set of the 

wavelet coefficients were used. The statistical features used to represent the time-

frequency distribution of the iEEG signals are maximum, minimum, mean, standard 

deviation, variance, skewness and kurtosis. These feature vectors, which were calculated 

for the D1–D5 and A5 frequency bands were used in classifying the iEEG signals. 

C. ANFIS 

The ANFIS is a fuzzy Sugeno model put in the framework of adaptive systems to   

facilitate learning and adaptation. Such framework makes the ANFIS modelling more 

systematic and less reliant on expert knowledge. Like neural networks, ANFIS networks 

are also used in modelling, classification and control [8]. 

The ANFIS classifier was trained with the training feature sets of EEG signals. The 

features obtained from data sets (sets A and B) were divided into two separate feature 

data sets - the training data set and the testing data set. The adequate functioning of the 

ANFIS depends on the sizes of the training set and test set. The training data set was 

used to train the ANFIS model, whereas the testing data set was used to verify the accu-

racy and the effectiveness of the trained ANFIS model for classification of the five 

classes of EEG signals.  

The present study changes of the final (after training) membership functions (mf) 

with respect to the initial (before training) membership functions of the input parameters 

were examined. In this work ANFIS network was trained using different membership 

functions such as gbell, triangular, Gaussian, trapezoidal and pi were tried out for dif-

ferent orders of those membership functions in order to compare the test performance of 

classifier using those membership functions. For the training of the network, there is a 

forward pass and a backward pass.  We now look at each layer in turn for the forward 

pass.  The forward pass propagates the input vector through the network layer by layer 

shown in Fig. 3[8]. 
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Fig. 3. ANFIS architecture [8]. 

In the backward pass, the error is sent back through the network in a similar manner to 

back propagation [9]. 

Layer 1: 

The output of each node is: 
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Where 
iii cba ,, are parameters to be learnt. These are the premise parameters. 

Layer 2: 

Every node in this layer is fixed. This is where the t-norm is used to ‗AND‘ the mem-

bership grades - for example the product: 
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Layer 4: 

The nodes in this layer are adaptive and perform the consequent of the rules: 
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          (4) 
 

The parameters in this layer (
iii rqp ,, ) are to be determined and are referred to as the 

consequent parameters. 

Layer 5: 

There is a single node here that computes the overall output: 
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This then is how, typically, the input vector is fed through the network layer by layer 

[8]-[11]. 

D. Performance estimates of classifier 

     The outcome is abnormal for the input corresponding to abnormal subject then it is 

called a True Negative (TN). If the outcome refers to normal subject then it is called 

False Positive (FP). True Positive (TP) and False Negative (FN) are the case where the 

normal is classified as normal and abnormal respectively. The test performance of the 

classifiers can be determined by the computation of sensitivity, specificity, accuracy, 

positive predictive value, and negative predictive value [12]. The sensitivity, specificity, 

accuracy, positive predictive value (PPV), and negative predictive value (NPV) are de-

fined as: 

• Accuracy    = (TP+TN) / (TP+FP+TN+FN) 

• Sensitivity   = TP / (TP+FN)        

• Specificity   = TN / (TN+FP)      

• Positive Predictive Value = TP / (TP + FP)     

• Negative Predictive Value = TN / (TN + FN)  

III. RESULTS AND DISCUSSION 

A total of 540 signals were randomly taken for analysis, where focal (set A) and non 

focal (set B) signals are equal in number (270 signals each). The signals set A and B are 

subjected to spectral analysis using discrete wavelet transform and decomposition levels 

were chosen to be four. The wavelet coefficients are extracted from iEEG signals and 

features like maximum, minimum, mean, standard deviation, variance, skewness and 

kurtosis were obtained from wavelet coefficients. The obtained features were used for 

training of ANFIS classifier where seventy percentage of signals (378 signals) from set 

A and B were chosen as training signals and the same is used for training of ANFIS 

network and thirty percentage of signals (162 signals) were used as test signals for test-

ing the trained ANFIS network. The test performance of the classifiers can be deter-

mined by the Performance estimates like Accuracy, Sensitivity, and Specificity. These 
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performance estimates of the classier vary depending on the type of membership func-

tion and also on the levels of the membership function used for classification.  

Figs. 4-6 illustrate the results obtained. Fig. 4(a) shows that the maximum sensitivity 

of 98.75% is obtained for Gaussian membership functions with the three membership 

functions. The sensitivity of the classifier is high for Gaussian membership function. 

And from Fig. 4(b) maximum specificity is 98.68% is noted at pi membership function 

with three membership functions.  

Fig. 5(a) and (b) show that the maximum ppv of 98.77% is achieved in pi member-

ship function and the maximum npv of 98.77% is reached in gbell, trapezoidal and 

Gaussian membership functions. From Fig. 6, the overall gain in accuracy is noted for 

Gaussian membership function and the maximum accuracy of 98.15% is achieved in 

Gaussian membership function with three membership functions as accuracy gives im-

portance to true positive and true negative of classification. Table 1 shows the numerical 

values of performance estimates with Gaussian membership function. 
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                                 (a)                               (b) 

Fig. 4(a) Variation of percentage sensitivity for different types of membership functions (b) Variation of 

 percentage specificity for different types of membership functions 
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Fig. 5(a) Variation of percentage PPV for different types of membership functions (b) Variation of 

 Percentage NPV for different types of membership functions 
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Fig. 6. Variation in percentage accuracy for with different membership functions 

TABLE 1: VARIATION IN PERFORMANCE ESTIMATES FOR WITH DIFFERENT ORDERS OF GAUSSIAN 

MEMBERSHIP FUNCTIONS 

Item TP FP FN TN accuracy 

(%) 

sensitiv-

ity (%) 

specific-

ity (%) 

PPV 

(%) 

NPV 

(%) 

mf 2 79 2 3 78 96.91 96.34 97.50 97.53 96.29 

mf 3 79 2 1 80 98.12 98.75 97.56 97.53 98.77 

mf 4 78 3 1 80 97.50 98.73 96.39 96.30 98.77 

mf 5 78 3 3 78 96.30 96.30 96.30 96.30 96.30 

mf 6 78 3 2 79 96.91 97.50 96.34 96.30 97.53 

 

Fig. 7 shows the Gaussian membership function and its membership level placement 

for achieving the highest accuracy in the classification. Analysis of electroencephalo-

gram (EEG) signals in normal and abnormal conditions is essential for disease research, 

medical device design and treatment planning. The future studies may include optimiza-

tion of type and levels of different membership function in ANFIS network and feature 

extraction from the signals using different types of wavelet transforms.  
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Fig. 7. Gaussian membership function which gives better test performance 

IV. CONCLUSION 

In this paper, we have presented a classification technique for diagnostics and detec-

tion of epilepsy more efficiently. We have used wavelet transform as a tool to extract 

features for classification purpose. After experimenting with a large number of features 
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for each technique, our experiment shows that this system can achieve a detection rate 

accuracy of about 98.2 %. Different levels or scales of wavelet decomposition and their 

significance in extracting the features were studied. It can be concluded that for scales 3-

5 of wavelet decomposition, the features were more prominent. This study seems to be of 

high clinical relevance since the analysis of EEG in normal and diseased states is essen-

tial for disease diagnosis and surgery planning. Thus this technique can very well used 

as a second opinion to radiologists for analysis of iEEG and has the ability to automati-

cally detect presence of epilepsy. 
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