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Abstract—A metal thermocouple (TC) consists of two dissimilar metal wires bonded to-
gether at one end and individually connected to measurement leads at the two open ends.
When the bonded end of the wires is placed at a temperature different from that of the mea -
surement  lead  ends,  a  voltage  appears  across  the  measurement  leads.  Classical  physics,
when used to predict the voltage expected from the thermal gradient found in the wires,
does not account for the measured voltage.  Due to this failure of classical physics, quantum
physics has been brought into play to explain the details of TC physics, and –over the last
half century– quantum physics has been the direction taken in TC theory. Unfortunately, to
date no theory has been developed that predicts the output voltage of a TC over its useful
temperature range. Presently all classical theories examine the temperature gradient and
ignore the three interfaces that exist –one at the TC bond and two others where contact is
made to the measurement leads. This seems justified because many years ago, and based on
the best experimental data available at the time, James Clerk Maxwell  (1831-1879) in his
famous book titled “A Treatise on Electricity and Magnetism” suggested that charge at an in-
terface did not occupy any space. Therefore, surface charge density could be defined as ex-
isting on a surface having zero thickness. This allowed a material's electrical conductivity to
be defined as a single constant throughout the material. The concept of a zero-thickness in-
terface also gave credence to Ohm's Law. Furthermore, thermodynamics is based on the as-
sumption that  each material  has a well-defined set  of temperature dependent properties
that  completely define the state  of the material  at  any temperature.  In the classical  ap -
proach to treating TC physics, Ohm's Law is modified to account for the temperature vari-
ation; but nothing of consequence happens at the zero-thickness interfaces. As a result, it
would appear that classical physics truly fails to describe TC physics, unless something has
been overlooked.  Fortunately, that something can be described as Maxwell's Other Choice
(MOC). Maxwell chose the zero-thickness electrical interface because no mass change was
detected when objects were charged; so, it was assumed that charge had no mass. Maxwell
clearly stated if charge had mass that the zero-thickness electrical interface would be incor -
rect and a finite-thickness electrical interface would be needed. This finite-thickness electri-
cal interface was MOC. Almost two decades after Maxwell's death it was discovered that
charge had a mass and, hence, size; so MOC is the proper way to describe charge at an in-
terface. Using MOC to describe an interface allows for the possibility of a finite charge den-
sity gradient to exist across an interface which in turn would give rise to a potential differ -
ence across an interface. In this paper it is shown when a modified Drude model and the full
charge flux equation are used to study a metal TC that interfacial potential differences oc -
cur; and, when these potentials are taken into account, this classical physics model gives a
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reasonable theory predicting the TC voltage over most of the useful temperature range for
all the popular (i.e., Type B, E, J, K, N, R, S and T) thermocouples.

I. INTRODUCTION

A junction between two materials is known as an interface. For example, the inside of
a glass half full of water has three interfaces: a water-glass interface, a water-air inter -
face, and a glass-air interface. On the other hand, the water has only two interfaces: the
water-glass interface, and the water-air interface. 

A thermocouple (TC)  –shown in Fig. 1– is a device used to measure temperature and
has three interfaces of importance; these interfaces each being held at a constant tem-
perature as depicted by the three circles in Fig. 1. The TC consists of two conductive but
dissimilar materials (Conductor 1 and Conductor 2 in  Fig. 1) connected at a common
end –creating one interface– and placed at a position where the temperature T is to be
measured; for example: T = Th in Fig. 1. The other end of each conductor is connected
to a lead and held at a known “reference” temperature; for example: Tc in Fig. 1. These
leads are the input to a voltmeter which measures the voltage ΔVt shown in Fig. 1. The
two conductors when connected together are referred to as a thermocouple or simply as
a couple. If the difference between the temperature being measured and the reference
temperature is ΔT, where for example: ΔT = T – Tc in Fig. 1, then the TC voltage in Fig.
1 is given by ΔVt = S ΔT where S is the Seebeck coefficient of the two-conductor couple
and is named after Thomas Johann Seebeck (1770–1831) who discovered the effect [1]. 

A. MFC, MOC, the Interface and the TC Interfaces

When studying electrical affects in materials, the contribution of the interface is often
ignored. This is mainly due to the observations of James Clerk Maxwell (1831-1879).
When Maxwell was writing his famous book titled A Treatise on Electricity and Mag-
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Fig. 1: General Diagram for a Thermocouple. Two metal wires are joined together
at a junction, and this junction is placed at a temperature of interest designated as Th.
The two wires and connecting junction –the junction is usually a weld– is known col-
lectively as a thermocouple (TC) but is also referred to as a couple. When the open ends
of a couple are held at  a reference temperature  Tc and connected to a voltmeter,  the
reading of the voltmeter ΔVt can be used to determine the temperature T provided that
the Seebeck coefficient S(T) of the couple is known, where ΔVt = S(T) (T – Tc). The Se-
beck coefficient is essentially the slope of the voltage-temperature curve. Although S(T)
can be nearly constant over a wide temperature range as in Fig. 6, usually it is not, as in
Fig. 5 and Fig. 7.
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netism [2] he was faced with the problem of how to electrically define charge at an in-
terface. 

Maxwell  postulated,  if charge had  no mass then  it  had  no size,  and hence,  there
would be no need to assign a thickness to the interface. Because the most sensitive mea-
surement instruments of his time could not detect any change of mass to an object when
the object was charged, he reasoned electricity had no mass; and a zero-thickness elec-
trical interface could, therefore, be used to describe charge at an interface (see [2] Vol 1,
p. 72).  This zero thickness interface postulate –which here is called  Maxwell's First
Choice (MFC)– has survived to this day. 

However, Maxwell also postulated, if charge had a mass then it also had a size, and
there must be an electrical thickness to an interface within which the charges would re-
side ([2] Vol 1, p. 72). This finite-thickness interface will be defined here as Maxwell's
Other Choice (MOC), but he chose not to investigate it further, since, as stated above,
no mass had ever been detected. In 1897, some 18 years after Maxwell's death, J. J.
Thomson discovered the electron as a particle having charge and mass. Had Maxwell
lived past the time of the electron's discovery, it is clear from his writings that he then
would have immediately infused MOC into the study of electrical phenomenon at an in -
terface.

This paper addresses only metallic thermocouples where the two wire interface is a
weld, but the results should also be applicable to highly doped semiconductor thermo-
couples in simple physical contact. The connecting junction of the two wires is usually a
welded interface like the one shown in Fig. 2, and has a slightly more complicated in-
terfacial structure consisting of several zones as depicted in Fig. 3.  A TC has three in-
terfaces; namely, one within each of the three constant  temperature circles shown in
Fig. 1.

The normal assumption in classical TC analysis is to assume each junction is always
in an isothermal region; so, the contribution to the thermocouple voltage is zero, and
the junction does not play a role other than joining the wires [3]. This assumption is not
made here; instead it is argued that the key to understanding the Seebeck coefficient and
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Fig.  3: Schematic of the interior of a
bead. The interior has a (dark) fusion zone
and a (lighter) heat-affected zone just like
the weld depicted and described in Fig. 2.

12
Fig. 2: Photo of a Thermocouple

Weld. Picture shows the two ther-
mocouple  wires  and  the  spherical
bead.
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the TC physics is to understand the voltage drop across an interface when the interfacial
region is defined by MOC; namely, the interface has a finite-thickness.

It is well known that when two different uncharged materials are brought together
and then separated that the materials often are charged to opposite polarities; and this
phenomenon is known collectively as triboelectric charging or simply tribocharging [4].
Clearly, in tribocharging some charges moved across the contacting interface during the
time of contact. When any two materials are brought together in contact, there is no
prior indication as to if the contact will be kept (to possibly make a thermocouple) or
separated (to possibly produce tribocharging). As a result, just as in tribocharging [5], in
TC physics theory there must be included a consideration of a current density J that can
occur across each interface when two dissimilar materials make contact as well as the
usual consideration that a temperature gradient T will have on the physics of the TC
problem.

If the interfaces are to be treated as an important part of TC analysis, the question
arises as to how to model these interfaces and especially the weld junction. The cross-
section of a welded butt joint is shown in Fig. 4, with the darkest gray representing the
weld or fusion zone, the medium gray the heat-affected zone, and the lightest gray the
base materials. 

The fusion zone in  Fig. 4b is expected to be homogeneous based on the molecular
mixing within the violent fusion process.  However, the heat-affected zone in  Fig. 4b
may or may not be completely homogeneous (i.e., the same on both sides in the weld) as
it depends on the conditions during the weld. In the present paper it is assumed homo-
geneous.

When modeling the weld it becomes convenient, in the first approximation, to model
it as specific zones –each zone attached to the next via a  finite-thickness interface as
shown in Fig. 4c. Treated in this way the bead or weld has the same general form as any
TC interface, so the equation giving the potential across a finite-thickness interface –
which will be presented in Section VI– is applicable to each interface within the weld.
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Fig.  4: Schematic of a butt weld of two different metals.  The dia-
grams are: (a) A square butt joint before weld occurs; (b) Cross-section of
the welded butt joint where the darkest gray center represents the fusion
or weld zone, the lighter gray represents the heat-affected zone, and the
outer light grays are the two thermocouple wires a.k.a. the base materials;
(c) The locations of the electrical interface regions. Note: the size of the
interface regions are greatly exaggerated in (c) and for two metals all in-
terface regions are typically found to be much less that one atomic layer
thick.
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II. CHARGE FLUX, MOC AND TC ANALYSIS

As noted in Section I the concept of electricity being composed of charges which do
not have mass –and, therefore, do not have size– led Maxwell to choose Maxwell's First
Choice (MFC) in which charge on a surface can exist on a surface of zero-thickness.
The later discovery that electricity was the result of the motion of electrons, and that the
electrons had mass, requires the charge on a surface to exist on a surface of finite-thick-
ness and is referred to in this paper as Maxwell's Other Choice (MOC). In thermocou-
ple (TC) analysis there are three junctions or interfaces that must be analyzed, and these
interfaces are shown within the constant temperature circles of Fig. 1. When free-elec-
trons move through a TC in a closed circuit, a current  i flows through each wire such
that, if a plane is cut through either wire, there is a charge flux or current density J – a
current per unit area – flowing through each and every point in the plane of the wire. To
obtain the current i flowing through the wire, it is a simple matter to sum up the current
density at every point over the total area of the wire cut by the plane.

The charge flux can be written today in one of three ways as

J = σ E  =  −σ ∇ V                   (A)  Ohm's Law
 

J = −σ ∇ V −Gρ∇T                  (B)  Modified Ohm's Law
 

J = −σ ∇ V −D ∇ρ−Gρ ∇T    (C)  Full Charge Flux

(1)

When written as (1A) the equation is known as the field form of Ohm's Law where E is
the electric field at some point of interest within either TC wire and σ is the electrical
conductivity of the metal wire at the point. But, since E = – V, Ohm's Law also relates
the charge flux or current density J to the potential difference V along the wire. When
combined with  MFC Ohm's  Law has  an  important  significance to  the  TC analysis.
Namely, if the thermocouple is held in an open circuit, then there can be no J anywhere,
so E must be zero everywhere inside either of the metal conductors. Furthermore, with
MFC there can be no potential difference across the zero-thickness interface. 

Ohm's Law, when modified to account for the fact that the temperature is not constant
at every point, is written as (1B) where G is defined as the thermophoresis coefficient
and  ρ is the free-electron charge density. Now, if the thermocouple is held in an open
circuit, then there can be no J and the sum of the two terms on the right hand side of
(1B) must be zero everywhere inside either of the metal conductors. As a result, a tem-
perature gradient along a TC wire gives rise to a potential gradient along the wire. This
is the normal starting point in the analysis of a TC. Using (1B) in TC analysis reveals,
if there is no thermal gradient, then there can be no potential gradient, and this is also
found experimentally. However,  using (1B) gives an equation to predict the potential
along a wire; but the predicted potential is the same along any wire so it can't account
for the TC voltage. It is this failure that has led to the emphasis on examining quantum
physics to explain the voltage output of the TC [6]. However, even with quantum ad-
justments to give an electrical double layer, no theory has yet emerged that can predict
the output voltage of a TC over a large temperature range.
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In general within a volume element surrounding a point any number of scalar quanti-
ties  can  be defined;  two examples  would  be number  density and  temperature.  The
charge flux equation (1C) can be developed based purely on the arguments of calculus
when a gradient exists for any scalar quantity across the volume element [7]. However,
– in the absence of magnetic affects – the charge flux equation has also been developed
from a classical physics model of collisions [8]; when only electrons are free to move
the charge flux equation (developed in [8]) reduces to (1C) where D is the diffusion co-
efficient of the free-electron and  D and  G are related by D =  GT. However, the extra
term of a gradient in charge density in (1C) is not compatible at an interface with MFC
since a gradient needs to exist across a finite-thickness, even if that  thickness is in-
finitesimally small. However, by applying MOC there exists a region of surface where
the gradient can exist. It is this combination of (1C) and MOC that gives an interfacial
potential  across interfaces of two dissimilar  materials  when the free-electron  charge
density  ρ of each material differs.  The details of this problem have been worked out
elsewhere including determining the thickness of the interfacial region [9] and the po-
tential across the interface [10]. This interfacial potential and its application to TC anal-
ysis is discussed further in Section VI through Section IX.

III. VARIATION OF CHARGE DENSITY WITH TEMPERATURE

The free-electron charge density ρ at any point in the wire is defined as the charge per
free electron times the number of these charges within a volume element at the point. If
n is defined as the free-charge number density, then the free-electron charge density is

ρ=−q0 n (2)

where q0 is the magnitude of the charge on an electron (q0 ≈ +1.6 x 10-19 C). 
For a homogeneous metal cube of side L containing N free-electron charges the free-

electron number density at any point is

n=n(L , N )=
N

L3 . (3)

But the total differential of n is ([11] see p. 689) dn=
∂ n
∂ L

dL+
∂ n
∂ N

dN , and based on

(3) it can be seen that
∂n
∂ L

= ∂
∂ L( N

L3)=−3
N

L4=−
3
L

N

L3 =−
3
L

n , and
∂n
∂ N

= ∂
∂ N ( N

L3)= 1

L3=
1
N

N

L3=
1
N

n ,

so dn=
∂ n
∂ L

dL+
∂ n
∂ N

dN =−3
n
L

dL+
n
N

dN , or
dn
n

=−3
dL
L

+
dN
N

. Also note that, if

both N =N (T ) and L=L (T ) , then dN =
dN
dT

dT and dL=
dL
dT

dT so

dn
n

=−3
dL/dT

L
dT +

dN /dT
N

dT =(−3
dL/dT

L
+

dN /dT
N )dT which can be written as

dn
n

=(−3α L+αN )dT =αdT (4)
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where

α=−3α L+α N (5)

and where

αL=
1
L

dL
dT

(6)

is defined ([12], see Eq. 18, p. 358) as the instantaneous thermal coefficient of linear
expansion (CLE) and is consistent with the starting equation in thermodynamic studies
([13], see Eq. 15, p. 14), and where

αN =
1
N

dN
dT

(7)

is defined (in this paper) as the coefficient of free-electron recombination/generation.
In general the CLE (αL) for many metals has been found to increase with increasing

temperature; the increase being most dramatic at very low temperature. The physical
cause of the variation of the CLE with temperature has been shown to be related to the
variation of the lattice constant with temperature [14]. However, in this paper it is as-
sumed  that  αL≠αL (T ) and  αN≠αN (T ) so  that  (6) when  written  as

dL
L

=αL dT integrates  to L=L0 eα L(T −T0) and  if,  αL (T −T 0 )≪1 then

L≈L0 [1+α L(T−T 0)] which is the equation for linear  expansion found in physics

textbooks ([15], see p 431 Eq. 19-9) and reference handbooks ([16], see p. F-117).

Likewise, (7) is written as
dN
N

=αN dT which integrates to

N =N 0eα N(T −T 0) (8)

and finally (4) integrates to 

n=n0 eα(T −T0) . (9)

Combining (2) and (9) gives

ρ=ρ(T )=−q0 n0eα(T −T0)=ρ0eα(T−T 0) (10)

as the general equation giving the variation of charge density with temperature. Finally,
measurements are often made at some reference temperature T0 → Tref and (10) becomes

ρ=−q0 nref eα(T−T ref)=ρref eα(T −T ref ) (11)

The free-electron charge density given by (11) is very important.  Since the electrical
conductivity is  σ =  ρb  where  b is the electron mobility, every term on the right hand
side of (1C) contains  ρ. Hence, solving problems using the full charge flux equation
(1C) relies heavily on having specific knowledge of ρ.
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IV. ESTIMATING THE FREE-ELECTRON DENSITY IN METALS AND ALLOYS

In (11) although it is not possible to look up the value of ρref directly, for a metal it is
possible to calculate its value based on a modification of the Drude model. If  na is the
mass number density of the atoms in a metal, then in the Drude model it is assumed
that there is one free-electron per atom in the metal and, therefore, n = f na where f = 1.
A common practice is to assume the Drude model (f = 1) holds for all temperature, but
experimental evidence at low temperature suggest that f is different than unity for most
of the alkali [17] and alkaline [18] metals. Therefore, here the fraction f will be carried
through the equations, and it will be shown later that experimental evidence for a ther -
mocouple also suggests the fraction is not unity. 

A. Pure Metals

If an elemental metal, has a molecular weight M, and a mass density δa at a tempera-
ture  T,  then  it  has  a  mass  number  density  na given  by

na [atoms /volume]=(N A[atoms /mole]δa[ g /volume ])/ M [g /mole] where  NA is Avo-
gadro's number; NA ≈ 6.022 x 1023 molecules per mole. So, if the metal has a mass den-
sity δaref

measured at a reference temperature Tref, it will have –as just noted–  a num-

ber density na ref
of atoms per unit volume based on this mass density δaref

. If there

is, at this reference temperature, some fraction fref of these atoms that have a free-elec-
tron, then the number density of the free-electrons at this reference temperature is

nref = f ref naref
= f ref

N Aδa ref

M
(12)

 As already mentioned, for the Drude model f = 1, but in this paper f will be included
since, as already mentioned, experimental evidence suggest f ≠ 1.
 

B. Metal Alloys

Thermocouple wires are often made of metal  alloys. For example,  constantan  is a
copper-nickel alloy nominally of 55 wt % copper and 45 wt % nickel but specific com-
positions can vary the copper between 50% and 65% (see  [19], p. 158). For nominal

constantan: 0.55=mCu /(mCu+mNi)=
mCu

V A

/
(mCu+mNi)

V A

=
mCu

V A

/δA where  δA is  the  mass

density of the alloy and  VA is the volume of the alloy. Hence,  mCu /V A=0.55 δA and
mNi /V A=0.45δA so, the alloy number density –for the alloy constantan– is
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n A = nCu+n Ni

=
N A

M Cu

mCu

V A

+
N A

M Ni

mNi

V A

=
N A(0.55)δA

M Cu

+
N A(0.45)δ A

M Ni

= N A δA(0.55
M Cu

+
0.45
M Ni

)
=

N A δA

M A

(13)

Where 
1

M A

=(0.55
M Cu

+
0.45
M Ni

) or upon rearranging the molecular weight of the alloy is

M A=
1

(0.55
M Cu

+
0.45
M Ni

) (14)

If at the reference temperature Tref there is some fraction fref of these atoms in the alloy
that have a free-electron, then the number density of the free-electrons at Tref is

nref = f ref nAref
= f ref

N A δAref

M A

(15)

which is equivalent to  (12) except  (15) is for an alloy. Although  (14) was developed
here for nominal constantan, its conversion to any general alloy is simply to sum all the
constituents in the denominator of (14) so the generalization will not be presented here.

C. Example: Type T Thermocouple – Copper and Constantan

For example, the density of the alloy constantan is δA = 8.86 g/cm3 and, since MCu =
63.546 g/mol and  MNi = 58.6934 g/mol,  then for constantan its molecular  weight  is

M A=
1

( 0.55
63.546

+
0.45

58.6934)
=61.267 g /mol and

nAref
=

N A δAref

M A

=
(6.022 x 1023

)(8.86)

61.267
=8.71 x 1022 atoms/cm3

=8.71 x 1028 atoms /m3 .

From (2) and (15) the free-electron charge density of constantan, assuming the Drude
model (f = 1), is ρref =−q0 n Aref

=(−1)(1.6 x 10−19
)(8.71 x1028

)=−1.39 x 1010C /m3 .

On  the  other  hand,  copper  has  a  mass  density  of δCu=8.93 g /cm3 , so

nCu ref
=

N AδCuref

M Cu

=
(6.022 x 1023

)(8.93)

63.546
=8.46 x 1022 atoms /cm3

=8.46 x 1028atoms /m3 ,

and from (2) and (12) the free-electron charge density of copper for the Drude model is
ρ0=ρref =−q0nref =(−1)(1.6 x 10−19

)(8.46 x1028
)=−1.35 x 1010C /m3 Thus,  there  is

9
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just a marginally higher (≈3%) free-electron charge density in constantan than in cop-
per at the reference temperature Tref when the Drude model (fref = 1) is assumed. 

V. VOLTAGE ALONG A CONDUCTOR IN A THERMAL GRADIENT

A metal expands when heated. If a metal bar of any length has one end held at a cold
temperature Tc and the other end held at a different temperature T, then, using (1C) it
was shown in [20] that the voltage drop at the ends of the conductor due to the tempera-
ture gradient along the conductor is 

V T−V c=
k
q0

(T −T c) [1+α
2 (T +T c)]. (16)

where k is Boltzmann's constant (k ≈ 1.38 x 10-23 J/K) and, since q0 ≈ +1.6 x 10-19 C,
then k/q0 ≈ 86.25 μV/K.  A note in passing should be mentioned here where in [20] eq.
19 has –k/(sq) and (16) here has +k/q0 but there is no discrepancy; namely, –k/(sq) = –k/
(sZq0) where s is the sign of the charge on the species and Z is the number of charges of
the species; when electrons are the specie of interest, then –k/(sq) = –k/(sZq0) = –k/[(-1)
(1)q0] =  k/q0. Also, in  [20] no consideration was given to the fact that the number of
free-electrons in the sample could change with temperature. In other words, it was tac-
itly assumed in (8) that αN = 0 so (16) had α = αL when derived in [20]. However, noting
(16) contains both coefficients in  (5) shows (16) is the more general equation for the
voltage difference at the ends of the conductor. Based on convention the voltage differ-
ence ΔV = VT – Vc is always defined as being taken from the reference end at Tc to the
other end of the conductor held at T = Th. If there are two isolated (not connected) con-
ductors 1 and 2 with coefficients of linear expansion given by αL1 and αL2, respectively,
each held with one end at a general temperature T and the other at a referenced temper-
ature Tc, then (16) allows the voltage drop –at the general T end with respect to the ref-
erence end– along each conductor to be written as 

ΔV 1=
k
q0

(T−T c )[1+
1
2 (T +T c)α1] , (17)

and

ΔV 2=
k
q0

(T−T c)[1+
1
2 (T+T c )α2]. (18)

If 1 and 2 are now connected as in the couple depicted in Fig. 1, then adding the volt-
age drop from the negative N(-) cold end of 1 (on the right in Fig. 1) to the hot end of 1
(as given by (17)) to the voltage drop from the hot end of 2 (on the left in Fig. 1) to the
cold end of 2 (as given by the negative of (18)) give the total voltage across the couple
as 

ΔV ΔT=ΔV 1−ΔV 2=
1
2

k
q0

(T−T c)(T+T c )(α1−α2 ) . (19)

It was shown in [20] that (19), with αN = 0, when divided by T – Tc gives the standard
definition of the Seebeck coefficient of the couple but does not quantitatively predict the

10



Proc. ESA Annual Meeting on Electrostatics 2014; Paper J3

correct value or necessarily the correct  sign.  It  is interesting to note in  passing that
when both conductors are the same, then α1 = α2, and no voltage drop occurs at the ends
of the couple no matter how large the temperature difference. On the other hand, when
both conductors are the same except for the amount of impurities, then N1 ≠ N2, and α1 ≠
α2, so a very small voltage drop could occur at the ends of the couple its magnitude be-
ing dependent on how large of a temperature difference exists and the extent of the im -
purity concentration. Note that  by the convention presented in  this paper  (19) is the
voltage from the negative N(-) leg to the positive P(+) leg defining Conductor 1 as N(-).

VI. VOLTAGE ACROSS AN INTERFACE

The requirement of a finite-thickness interface and the extension of Ohm's Law to in-
clude the full charge flux (1C) brings an added consideration to the TC physics. In [20]
it was noted –for a  finite thickness interface– that there exists an  interfacial voltage
drop across an interface held at a temperature T as originally calculated in [10]. This in-
terfacial voltage drop for two materials 1 and 2 in contact is

ΔV 12=V 02−V 01=
kT
q0

ln
ρ02(T )

ρ01(T )
(20)

where ρ01 and ρ02 are the free-electron charge densities of conductors 1 and 2, respec-
tively, everywhere outside of the interfacial region. Specifically, for the TC physics un-
der consideration here the free-electron charge density of each conductor contributes to
the standard electrical conductivity of that conductor and is a single valued property of
that conductor everywhere within the constant temperature region depicted by the circle
in Fig. 1 –except inside the finite-thickness interface. The voltage drop across the inter-
face ΔV12 is read as the “voltage at 2 with respect to 1” and measured from wire 1 to
wire 2. 

VII. THE AFFECT OF METER LEADS

The simplest method to measure a voltage difference across two terminals is to place
a voltage sensing device –called a voltmeter– across the terminals. Both of the connect-
ing wires of the voltmeter are made of the same conductor material (usually copper) but
are not necessarily of the same material as either leg of the couple. As a result, when the
voltmeter leads come in contact with the ends of a thermocouple, they create two extra
interfaces that must be accounted for in the analysis.

Notice (20) indicates the sum of the voltages just at the interfaces in Fig. 1 is (start-
ing from the right side and moving counter clockwise around the circuit)

11
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ΔV IF = ΔV w1(T c)+ΔV 12(T )+ΔV 2w(T c )

=
kT c

q0

ln
ρ01(T c)

ρ0w(T c)
+

kT
q0

ln
ρ02(T )

ρ01(T )
+

kT c

q0

ln
ρ0w(T c )

ρ02(T c )

=
kT c

q0

ln
ρ01(T c)

ρ0w(T c)
+

kT c

q0

ln
ρ0w (T c)

ρ02(T c)
+

kT
q0

ln
ρ02(T )

ρ01(T )

=
kT c

q0 (ln
ρ01(T c)

ρ0w(T c)
+ln

ρ0w(T c)

ρ02(T c) )+
kT
q0

ln
ρ02(T )

ρ01(T )

=
kT c

q0

ln
ρ01(T c)

ρ02(T c)
+

kT
q0

ln
ρ02(T )

ρ01(T )

=
kT
q0

ln
ρ02(T )

ρ01(T )
−

kT c

q0

ln
ρ02(T c)

ρ01(T c)

(21)

where ln
β01

β0w
=lnβ01−lnβ0w was used in line 4 of (21) to obtain line 5 of (21). As can

be seen in (21) the affect of adding the lead-wires of the meter does not add any extra
potentials because both lead-wires are at the same temperature Tc. Furthermore, in line 6
of (21), if T = Tc, then the ln terms cancel resulting in ΔVIF = 0. By the same procedure
it can be shown that adding any number of wires together – all at the same temperature
– will always result in ΔVIF = 0. It is only when one junction is at a different tempera-
ture that the result ΔVIF  0 will occur. In Fig. 4c application of (21) shows that the bead
interfaces also cancel leaving only the interface between conductor 1 and 2 of interest.

In [20] it was found that when the interface potential drop given by (21) –which was
found at the three constant temperature junctions of the couple, i.e., within the circles in
Fig. 1– is added to the potential given by (19) –which was found as the sum of the po-
tential drops across the ends of each wire in the thermal gradient–  that this total poten-
tial  Vt across the couple comes closer to experimentally measured values. However, in
[20] no attempt was made to correct the value of ρ for its value at the junction tempera-
ture T. In this paper that correction will now be made explicitly in the next section.  

VIII. INTERFACIAL POTENTIAL – CORRECTIONS FOR TEMPERATURE

In  (21) there is  no way to determine the value of  ρ at  the temperatures of interest.
However, (11) and (12) show it is possible to estimate the free-electron charge density at
some reference temperature Tref if the density of the material is known at that tempera-
ture. Hence, it is useful to write (21) as

12
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ΔV IF =
kT
q0

ln
ρ02(T )

ρ01(T )
−

kT c

q0

ln
ρ02(T c)

ρ01(T c)

=
kT
q0

ln
ρ02ref e

−3α2 (T−T ref )

ρ01ref e
−3α1 (T−T

ref )
−

kT c

q0

ln
ρ02ref e

−3α2 (Tc−T ref )

ρ01ref e
−3α1 (Tc

−T
ref )

=
k (T−T c )

q0

ln
ρ02ref
ρ01ref

+3
kT
q0

[(α1−α2)(T−T ref )]

 −3
kT c

q0
[(α1−α2)(T c−T ref )]

(22)

Since, from (2) ρref = –q0 nref , then (22) with the aid of (12) can be rewritten as

ΔV IF =
k (T−T c )

q0

ln
f 2ref

δ2 ref
M 1

f 1ref
δ1ref

M 2

  +3
kT
q0

[(α1−α2)(T −T ref )]

 −3
kT c

q0
[(α1−α2)(T c−T ref )]

(23)

where in (23) only f1, f2 and (α1 – α2) are unknown. 
In the past in any TC model two assumptions are usually made. First, it is assumed

that  the total  number of free-electrons does not change with temperature,  for which
case, αN = 0, and as a result (α1 – α2) → (3αL2 – 3αL1). Second, the Drude model is as-
sumed, i.e., f1 = f2 = 1, and then everything in (23) is known. However, to keep the study
more general, these assumptions will not be made in this paper.

IX. THE COMPLETE PICTURE

In Section V the voltage dropped along the full length of a conductor whose ends are
held at two different temperatures T and Tc was given by (16) so that for the thermocou-
ple shown in Fig. 1 there is a voltage drop along conductor 1 –given by (17)– that must
be added to the (negative of the) voltage drop coming back down conductor 2 –given by
(18)– which gives (19) as the full voltage drop ΔVΔT of the thermocouple due to the tem-
perature gradient along the conductors. 

However, this is not the complete picture because each interface also has a potential
that develops due to the difference in the free-electron charge density of the two materi-
als. As was shown in Section  VII the leads, which are held at the same temperature,
have no net affect. However, because one junction is held at a higher temperature (21)
shows an extra potential is developed across the terminals of Fig. 1. When corrected for
quantities measured at a reference temperature (21) becomes (23) as the final interfacial
potential ΔVIF developed across the couple. 

Thus, the total output voltage of a thermocouple having the temperatures and conduc-
tors at the locations shown in Fig. 1 is

13



Proc. ESA Annual Meeting on Electrostatics 2014; Paper J3

ΔV t=ΔV Δ T+ΔV IF (24)

14

Fig.  5: TC Output Voltage vs Temperature for a Type T thermocouple.  The
square symbols represent measured data points from [22] and the solid line is given
by (24) using (19) and  (23) with f 2ref

/ f 1ref
= 1.35 and  (α1 –  α2) = 1.4 x 10-4/°C,

where α1 and α2 are assumed independent of temperature.
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Fig.  6: TC Output Voltage vs Temperature for a Type E Thermocouple.  The
square symbols represent measured data points from [22] and the solid line is given
by  (24) using  (19) and  (23) with f 2ref

/ f 1ref
= 1.9 and (α1 –  α2) = 3.6 x 10-5/°C,

where α1 and α2 are assumed independent of temperature. As seen from the solid line
for temperatures very much below 0°C, the assumption that  α1 and  α2 are constants
independent of temperature does not fit the data. To conform to the data very much
below 0°C, either α1 or α2 or both must be temperature dependent.
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where ΔVt is the voltage drop from the lead connected to conductor 1 (referred to as the
negative leg) to the lead connected to conductor 2 (the positive leg)  [21]. In  (24) the

ΔV ΔT term is given by (19) and the ΔV IF term is given by (23).

X. APPLICATION TO TYPE E, T AND B THERMOCOUPLES

There are several thermocouples in use today with each listed by a letter. Listed from
the highest to the lowest μV output per degree temperature change they are Type E, J, T,
K, N, R, S and B. Type K, N and T are the most commonly used. Specific data for Type
E, T and B thermocouples are shown in Table 1.

Type Pos(+)
Material

Neg(-)
Material

Pos(+) vs. Neg(-)
Alloy Wt - g/mol

Pos(+) vs. Neg(-)
Density - g/cc

B Pt, 30%Rh Pt, 6%Rh 153.76 vs. 185.13 17.52 vs. 20.51

E Ni, 10%Cr Cu, 45%Ni 57.947 vs. 61.267 8.73 vs. 8.86

T Cu Cu, 45%Ni 63.546 vs. 61.267 8.93 vs. 8.86

Table 1: Some Material Properties of Type B, E and T Thermocouples. Composi-
tion percentages and densities are from [21]. Alloy weight calculated using (14).

The voltage-temperature data for the various metal TCs listed in Table 1 can be found
in reference tables [22]. The TC output voltage vs temperature data for a Type T ther-
mocouple are shown in Fig. 5 as data points. Using the information in Table 1 and in-

Fig. 7: TC Output Voltage vs Temperature for a Type B Thermocouple. The
square symbols represent measured data points from  [22] and the solid line is
given by (24) using (19) and (23) with f 2ref

/ f 1ref
= 0.97 and (α1 – α2) = 1.25 x

10-5/°C where α1 and α2 are assumed to be constants independent of temperature.
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serting (19) and (23) into (24) and then plotting (24) gives the solid line in Fig. 5 when
f 2ref

/ f 1ref
= 1.35 and (α1 – α2) = 1.4 x 10-4/°C and where α1 and α2 are held constant

and independent of temperature. Since the coefficients of thermal expansion are typi-
cally in the range of 5 – 30 x 10 -6/K near room temperature (see [23]  Section 2.3.5), the
large value for (α1 – α2) suggests that (α1 – α2) ≈ (αN1 – αN2). Likewise, since f 2ref

/ f 1ref

= 1.35, it is clear that the Drude model (f = 1) is not applicable to this TC any more
than it is applicable to a quantum-mechanical description that describes the resistivity
of pure metals at low temperature for the alkali [17] and alkaline [18] metals.

The TC output voltage vs temperature data for a Type E thermocouple are shown in
Fig. 6 as data points. Using the information in Table 1 for the Type E thermocouple and
plotting (24) gives the solid line in Fig. 6 when f 2ref

/ f 1ref
= 1.9 and (α1 – α2) = 3.6 x

10-5/°C, and where α1 and α2 are kept independent of temperature. Again, since (α1 – α2)
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Fig. 9: Affect of % Rhodium on the α Coefficient Difference When Using
a Platinum Reference Wire.
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is large compared to the values of the CLEs, it may suggest that (α1 – α2) ≈ (αN1 – αN2).
Likewise, since f 2ref

/ f 1ref
= 1.9 it is clear that the Drude model (f = 1) is not applica-

ble to a Type E thermocouple. In Fig. 6 a poor fit of (24) to the data exists at very cold
temperatures which suggests that either α1 or α2 or both are temperature dependent.

The TC output voltage vs temperature data for a Type B thermocouple are shown in
Fig. 7 as data points. The solid line in Fig. 7 results with f 2ref

/ f 1ref
= 0.97 and (α1 –

α2) = 1.25 x 10-5/°C. Here again the large value for (α1 – α2) opens up the possibility that
(α1 – α2) ≈ (αN1 – αN2). Since f 2ref

/ f 1ref
= 0.97 the Drude model (f = 1) might be appli-

cable for a Type B thermocouple, but other values of f are possible since it is only a ratio
of f 2ref

/ f 1ref
that is important in (23). 

TC Type Ratio of f (α1 – α2) (/°C) Comment

B 0.965 1.33 x 10-5 Good full range

E 1.9 3.6 x 10-5 Poor sub zero

J 1.79 2.3 x 10-5 Fair sub zero

K 1.6 2 x 10-7 Poor sub zero

N 1.4 1.8 x 10-5 Poor sub zero

R 1.17 1 x 10-5 Good full range

S 1.15 7.4 x 10-6 Good full range

T 1.35 1.4 x 10-4 Good full range

Table 2: Constants used in (24) for the various metal TC Types. 

In this paper, using only classical physics, it has been shown that each voltage-tem-
perature graph of a TC is defined by a set of properties of f 2ref

/ f 1ref
= c1 and α1 – α2 =

c2 where c1 and c2 are constants of the couple and these constants for the most common
metal TCs are given in Table 2. Unfortunately, the specific values of f1, f2, α1 and α2 can-
not be determined from a succession of voltage-temperature graphs. However, it may be
possible to determine the value of  α from the measured potential  across an  isolated
metal bar in a thermal gradient using (16) provided care were taken to somehow insure
that any interfacial potentials cancel in the measurement.

Although the specific values of f1,  f2,  α1 and α2  have yet to be determined for any of
the metals used in a TC, it is possible to extract some information from further examin -
ing the Type R and S couples. The negative wire for both couples is pure platinum. The
positive wire of a Type S couple is platinum with 10% rhodium while the positive wire
of a Type R couple is platinum with 13% rhodium. Furthermore, if a third (useless) cou-
ple were made with the positive wire consisting of platinum with 0% rhodium, then for
this couple f1 = f2, and α1 = α2. Using the information in Table 2 the values of  f2/f1 = c1

and α1 – α2 = c2 are plotted as a function of the % rhodium in the positive wire in Fig. 8
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and Fig. 9. The results in Fig. 8 show the addition of rhodium increases the Drude frac-
tion above that found for a pure platinum wire. Likewise, Fig. 9 shows that the addition
of rhodium in platinum increases the value of α in the alloy relative to that in pure plat-
inum if α is required to be negative to help account for the experimentally observed de-
crease in  electrical  conductivity with temperature found in metals.  These results can
only be consistent if in  (5) αN≫−3 αL so that α=−3α L+α N≈αN and requiring
αN be negative requires  αNPt <  αNaly and therefore in  (11) the charge density decreases
with temperature faster in the platinum-rhodium alloy than in platinum. This is added
to the other finding that creating the alloy gives a higher Drude fraction.

XI. CONCLUSIONS

Using classical physics it has been shown in this paper that in a thermocouple (TC)
the output potential consists of two terms as given by (24). The first term given by (19)
accounts for the change in the free-electron charge density along each conductor when
one end is at a temperature T different from the other end which is at some known tem-
perature Tc. The second term given by (23) is a logarithmic term which accounts for the
potential that exists across any interface of two materials having different free-electron
charge densities. This potential is not measurable unless at least one interface is at a dif-
ferent temperature from the others as can be seen from the top line in (22).  From (23) it
can be seen that, if T = Th = Tc, then the first term is zero and the second and third terms
in (23) cancel; so there is never a total potential difference unless one of the junctions is
held at a different temperature than the other junctions.

Except for some below freezing temperatures as listed under Comments in  Table 2,
when the constants shown in Table 2 are used in (24) a reasonable fit to the experimen-
tal data is found for all the popular (i.e., Type B, E, J, K, N, R, S and T) thermocouples.

In the study of metals using either classical physics or quantum physics a standard as -
sumption made in all calculations is that the number density n of the free-electrons is a
constant and does not vary with temperature. There are two problems with this assump-
tion. One occurs due to linear expansion of the metal, which – for the same number of
free-electrons – causes these electrons to occupy a larger volume as the temperature in-
creases.  Hence, logic suggests that  the free-electron number density should go down
with increasing temperature. The second affect occurs when the temperature causes an
increase in the vibration of the atoms (ions). The movement of a positive ion closer to a
free-electron might result in a recapture of the electron which reduces the number of
free-electrons. This recapture is found in (8) when αN is negative. An example is found
in  metals  where  the  electrical  conductivity  decreases  with  increasing  temperature.
Likewise, the increased energy due to increasing temperature could produce more free
electrons when αN is positive. An example is found in semiconductors where the electri-
cal conductivity increases with increasing temperature.  Both effects are accounted for
in (5) which gives a temperature dependent free-electron number density n given by (9).
However, the physics behind the sign and magnitude of αN has not been explained in
this paper and more work on the subject is needed. 

Equation  (24) which consists of  (19) and  (23) describes reasonably well the output
voltage vs. temperature for various metal thermocouples as shown in Fig. 5, Fig. 6 and
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Fig. 7. The poor fit to data in Fig. 6 at very low temperature suggests either α1 or α2 or
both must be temperature dependent at these low temperatures. However, (23) requires a
knowledge of a metal's deviation from the ideal Drude model (f = 1) as well as its ther-
mal coefficient of free-electron recombination/generation  αN both of which are hidden
within the analysis of the theory as presented here. The reasonable fit to the experimen-
tal data over most of the useful ranges for all the common metal TCs suggests that fur -
ther pursuit of this classical physics model should offer greater insight into the basic
physics of the thermocouple and the Seebeck effect.

Finally, the fit between the classical theory given here by (24) and the experimental
data is only within about 5% over any extended temperature range. As a result, there is
room for improvement, suggesting there might still be some quantum-mechanical con-
siderations that will be required to obtain a more accurate prediction of the voltage-tem -
perature curve of a thermocouple.  Furthermore, it is well known that a quantum-me-
chanical description is presently needed to predict the linear  temperature increase of
electrical resistivity with temperature ([24] pp. 449–463). This experimental result has
so far alluded prediction using classical physics. However, it might be worth reexamin -
ing the affect of temperature on metal resistivity using classical physics with the new
implication of a temperature dependent free-electron charge density as given by (10).
Likewise, only the ratio f 2ref

/ f 1ref
can be obtained from voltage-temperature measure-

ments on a TC because a TC is a two metal system. This suggests f for a specific metal
must be determined from measurements pertaining to that specific metal. Here again
this suggests the need to apply the temperature dependent free-electron charge density
as given by (10) and the modified Drude model (f ≠ 1) to classical theory in an effort to
predict the resistivity-temperature curve of a metal.

XII. NOMENCLATURE

Description Symbol Units or Value

Electron diffusion coefficient D m2s-1: m2/s

Electric  field  at  a  point  inside
TC

E Vm-1: V/m;  E = – V

Drude fraction f f = n/na (or f = n/nA for an alloy)

Thermophoresis coefficient G m2s-1K-1: m2/(s K)

Current density (charge flux) at
a point inside the TC

J Cs-1m-2: (or Amp/m2)

Boltzmann's Constant k k ≈ 1.38 x 10-23 J/K
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Description Symbol Units or Value

Length of a cube of material L m

Length at temperature T0 L0 m

Atomic weight of metal M kg
mol

:  M ( kg
mol )=10−3M ( g

mol )
Atomic weight of alloy MA kg

mol
:  M A( kg

mol )=10−3 M A( g
mol )

Free-electron number density n m-3: n[m-3] = 106 n[cm-3]

Electron number density at T0 n0 m-3: n0[m-3] = 106 n0[cm-3]

Electron number density at Tref nref m-3: nref[m-3] = 106 nref[cm-3]

Number density of atoms na m-3: na[m-3] = 106 na[cm-3]

Number density of alloy nA m-3: nA[m-3] = 106 nA[cm-3]

Number of free-electron charges N dimensionless

Number FE at temperature T0 N0 dimensionless

Avogadro's Number NA NA ≈ 6.022 x 1023 molecules/mol

Seebeck coefficient S VK-1: (or V/°C);  ΔVt = S ΔT

Temperature T K

Cold junction temperature of TC Tc K

Hot junction temperature of TC Th K

Electron charge -q0 q0 ≈ +1.6 x 10-19 C

Coefficient of charge variation α K-1

Coefficient of linear expansion αL K-1

Coefficient  of  electron  recom-
bination/generation

αN K-1
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Description Symbol Units or Value

Mass density of elemental metal δa kg
m3

:  δa(kg
m3)=103δa( g

cm3)
Mass density of metal at Tref δa ref

kg
m3

:  δa(kg
m3)=103δa( g

cm3)
Mass density of an alloy δA kg

m3
:  δA(kg

m3)=103δA( g
cm3)

Mass density of an alloy at Tref δAref
kg
m3

:  δAref( kg
m3 )=103 δAref( g

cm3 )
TC Temperature difference ΔT K: (or °C); ΔT = Th – Tc

Voltage across the TC terminals ΔVt V: volts

Voltage along the TC wires ΔV ΔT V: volts

Voltage across the TC interfaces ΔV IF V: volts

Free-electron charge density ρ Cm-3: C/m3;  (ρ = -q0n)

Electrical conductivity σ Sm-1: S/m; siemens/m

Gradient in charge density ∇ ρ Cm-4: C/m4

Gradient in temperature ∇ T Km-1: K/m; (or °C/m)

Gradient in potential ∇ V Vm-1: V/m; volts/m

Thermocouple TC

Maxwell's First Choice MFC Charge  has  no  size;  zero-thickness
interface is allowed

Maxwell's Other Choice MOC Charge  has  a  mass  and  size;  zero-
thickness interface not allowed.
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