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Abstract— The problem of evaluation of the field of a surface charge θσσ cos0=  over a 

spherical surface centered at the origin, with θ  being the polar angle, is quite well known in 
electrostatics. In addition, the naïve method of direct integration is far more difficult than 
those involving methods of vector calculus, and the solution is usually evaluated by first eval-
uating the potential by the solution of Laplace’s equation. In 1992, however, David J. Grif-
fiths introduced a new short method of solution in a short note entitled “The field of a uni-
formly polarized object”. Here we express his work as a theorem which essentially talks of 
surface charges in place of polarized objects. We express the theorem in two forms and then 
use it to establish an illuminating theorem concerning the common enclosure of two arbitrary 
closed surfaces in space. Nevertheless, the major job of this paper is to explain a wonderful 
agreement between two ways of solution of the field of a uniformly polarized sphere. 

I. INTRODUCTION 
Perhaps one of the most common questions in electrostatics is this: what is the field of a 
uniformly polarized sphere of polarization P ? There are two common ways to tackle the 
situation. One is to notice that the bound charges reside only on the surface. The surface 
charge density varies as θPcos , where θ  is the angle between the direction of polariza-
tion and the radius vector relative to the centre of the sphere. The other way is to picture 
the process of polarization as a small stretching of the sphere. We say, there are two 
spheres of uniform charge densities ρ+  and ρ− , which coincide when there is no po-
larization; and when polarization occurs, the centre of positive charge moves by a dis-
tance d  (in the direction of polarization) relative to the centre of negative charge. The 
field is evaluated as the net field of two uniformly charged spheres in the limit 0d → , 

∞→ρ  while the product ρd  held fixed at the value P . The answers from these two 
ways of solutions match1. In a state of mind placed in the framework of the process of 
polarization, no one asks why? But I believe that the question can be asked and even an-
swered. This is the central theme of this paper. 
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II. A SWEET THEOREM IN ELECTROSTATICS 
In a short note2 published in 1992, David J. Griffiths introduced the concept that there 
exists a curious short method of solution of the field of a uniformly polarized object 
whenever it is easily possible to evaluate the field of a uniformly charged object of the 
same shape and size. We restate his work as a theorem here: 

Theorem: Suppose that the surface charge density over a closed surface S  varies as 
θσσ cos0= , where 0σ  is a positive constant and θ  is the angle that the outward 

normal forms with the positive direction of the axis of z. Then the field E  of the surface 
charge equals z10 ∂∂σ− /E , where 1E  is the field per unit charge density due to a uni-

form charge distribution in the region R  enclosed by S . 
We refer to this type of a charge distribution as a normal charge distribution. Our theo-

rem switches the problem of evaluation of the field of a certain species of variable charge 
distribution over a closed surface to the evaluation of the field of a uniform charge distri-
bution over a connected region. Naturally then, it can be best proved by using the diver-
gence theorem. 

The potential of the surface charge is 
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From the usual expression for the electric field of a uniform charge distribution of den-
sity ρ  we can observe that the field multiplying ẑ  above is 10 Eσ . The field E  of the 

surface charge can be deduced from the potential )V(r . 
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If 1E  can be found out simply, for example when the enclosed region has a symmet-
rical shape, then this theorem makes a direct evaluation of E  unnecessary. For example, 
if the surface be spherical, then we know from Gauss’s law that 1E  is 0)/3( ε′− rr  at 

points inside the sphere, where r′  is the radius vector of the centre of the sphere. Since 

1E  varies such that z1 ∂∂ /E  happens to be a constant ( 03ε/ẑ ), we see that the field 

of the surface charge is a constant ( 00 3εσ− /ẑ ) inside the sphere. This is the method of 
solution of Griffiths about which we had discussed in the abstract. 

III. PHYSICAL RELEVANCE OF THE THEOREM 
The theorem established in the last section has roots in an intuitive statement, and we 
shall call it as Griffith’s normal charge theorem. It will be the license to a particular heu-
ristic way of solution of some problems in physics3. 

Let’s get back to the situation in which our theorem is placed. S is a closed surface en-
closing a region R  of any arbitrary shape. We now take an infinitesimally small dis-
tance z∆  and make another region R′  by translating R  in negative z direction by a 
shift of z∆ . Fig. 1 shows the situation. 

 
Fig. 1. Cross section of two identical regions with their geometrical centres (not in the figure) separated by the 
vector ẑz∆ . The upper region carries a uniform positive charge, while the lower region carries a uniform 
negative charge of an equal magnitude. Two pairs of points separated by the vector ẑz∆  are depicted, to 
illustrate that a point Δz)zy,(x, +  is to the upper region what a point (x,y,z) is to the lower region. 

Now we fill R  by a very large charge density z0 ∆σ / . We fill R′  oppositely by a 

charge density z- 0 ∆σ / . The combined system is neutral except for some places near 

the periphery of the regions R  and R′ . 
Now the field at any point (x,y,z) due to the charge in R  is z)y,(x,z)/( 10 E∆σ , 

where 1E  is the field per unit charge density due to a uniform charge distribution in R . 
It is evident as equality from Fig. 1 that the value of field per unit charge density at a 
general point (x,y,z) due to a uniform charge distribution in region R′  is the same as the 
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value of field per unit charge density at the point z)zy,(x, ∆+  due to a uniform charge 
distribution in region R . This is the crux of this section. Hence, the field at any point 
(x,y,z) due to the opposite charge in R′  is z)zy,(x,z)(- 10 ∆+∆σ E/ . So the net 

field of the combined system is zz))/y,(x,-z)zy,(x,( 110 ∆∆+σ− EE , i.e. 

z10 ∂∂σ− /E .  

But this is also the field due to the normal charge distribution θcos0σ=σ  on S. 
Since the two fields are the same at all points, the two charge configurations must be the 
same. This is the conclusion: the normal charge theorem gives the physical insight into 
the working of this kind of a method of small relative shift in the evaluation of the field 
of a normal charge distribution over a sphere or any closed surface in general4. 

IV. AN ALTERNATE FORM OF GRIFFITH’S THEOREM 

Suppose ρ  and d  are two constants having the dimensions of charge density and length 

respectively. A surface charge distribution of n̂⋅ρd  over a closed surface will be a 
normal charge distribution. It follows from equation (1)  that the potential V of the sur-
face charge equals dE⋅  where E  is the electric field of a uniform region charge ρ  
within the region enclosed by the surface. 

This statement makes an alternate form of Griffith’s theorem5. We can note that E  is 
independent of d . Thus, for a given ρ  we can chose any d  and we would have dE⋅  as 
the corresponding potential )V(r . But the potential )V(r  is 
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Writing V=⋅dE  with V  in this final form, we readily infer that 
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Since the equality holds for all d . Here we have a statement for uniform region 
charges. 

V. CONCLUDING REMARKS 
Griffith’s normal charge theorem makes some statements in electrostatics evident. For 
instance,  the electric field at any point on the axis of z due to a volume charge of uni-
form density unity spilled in the cuboidal region described by the three inequalities 

2x /l≤ , 2y /b≤  and 2z /h≤  is numerically equal to the potential at that 
point due to a pair of surface charges of uniform densities plus unity and minus unity 
smeared respectively over the two rectangles, placed in the two different planes 
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2z /h=  and 2z /h−= , and bounded by the same pair of inequalities 2x /l=  

and 2y /b= . In addition, it can also help us establish mathematical statements. We’ll 
demonstrate this with a short mathematical digression. Here we introduce ourselves to a 
new mathematical theorem on the intersection of closed surfaces. 

Consider two closed surfaces 1S  and 2S . These two surfaces may or may not inter-

sect. It is intuitively evident that the integrals 1
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 for simplicity. Some can prove this proposition and then consider this nota-

tion to be defined – while others can naturally talk of it as a sum of a large number of 
products. We shall learn here that this integral is necessarily non-negative. 

Let’s now call the two closed surfaces S  and S′ . We denote by R  the region en-
closed by S  and by R′  the region enclosed by S′ . Next we imagine R′  to be filled 
uniformly by a region charge of density ρ , and evaluate the flux of the electric field of 
this charge distribution over the surface S . The situation is shown in Fig.2. 

 
Fig. 2. Examples of two closed surfaces S  and S′ . The region enclosed by S′  carries a uniform charge den-

sity ρ . In (a) the surfaces intersect and there is a non-zero volume of the common region enclosed by both S  

and S′ . In (b) the common region is zero. 

By the statement of Gauss’s theorem we have the knowledge that the flux amounts to 

0ερν /enc , where encν  is the volume of the region enclosed by both S  and S′ , i.e. the 

common region RR ′∩ . Now, invoking the result of equation (2) , we express the flux 
as 

da
rr

ad
⋅

′−
′

πε
ρ
∫∫∫∫
′

)
4

(
SS 0

 



Proc. ESA Annual Meeting on Electrostatics 2011 6 

As this equals 0ερν /enc , we have 
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Switching the process, i.e. filling R  by ρ  and considering flux over S′ , we get  
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Comparing equations (3)  and (4) , we see that 
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We assume a convention of denoting this common value as 

enc4πν=
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Our result is that this integral equals π4  times the volume encν  of the common re-
gion enclosed by both of the two closed surfaces of integration. Hence, it equals zero if 
the surfaces do not intersect. It is zero even if S  and S′  do not intrude, i.e. even if they 
touch each other over a finite or infinitesimal area. If it is non-zero, then it is necessarily 
positive, and π41 /  of its value equals the volume of the common region. We call this 
theorem as the common region theorem. It teaches us the important fact that the integral 

∫ ′−
′⋅

rr
adda

 is essentially non-negative. 

VI. APPENDIX 
In course of our derivation of the common region theorem we used concepts from elec-
trostatics. But the theorem is a purely mathematical statement and must have a mathe-
matical proof. With the benefit of hindsight we can see that after carefully surveying our 
proof a short direct proof can be obtained. We must take note here that this proof de-
prives us from all insight and knowledge in electrostatics that we got when we spontane-
ously derived the theorem. 

If ),f( 21 rr  is any scalar function of two independent coordinates 1r  and 2r , and 1S  

and 2S  are any two closed surfaces enclosing two connected regions 1R  and 2R  re-
spectively, then, according to a well-known corollary of the divergence theorem 
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R
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1

∫∫∫ − 12 rrδπ  is π4  if 2r  is inside 1R  and zero if it’s outside. 
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