
Proc. ESA Annual Meeting on Electrostatics 2011 1 

A Theoretical Understanding of the Physi-
cal Mechanisms of Electrospinning 

 

Chitral J. Angammana and Shesha H. Jayaram 
High Voltage Engineering Lab (http://www.power.uwaterloo.ca/HVEL/) 

Department of Electrical and Computer Engineering, University of Waterloo 
200 University Ave., Waterloo, ON, N2L 3G1, Canada  

phone: (1) 519-888-4567 
e-mail: cjangamm@uwaterloo.ca, jayaram@uwaterloo.ca  

Abstract— More recently, electrospinning models have been developed so that the electro-
spinning process could be approximately analyzed based on the parameters that govern the 
process. However, parametric analysis and accounting complex electrode geometries in the 
simulation are extremely difficult since the non-linearity nature in the problem. Therefore, 
the aim of the present work is to develop an existing electrospinning model for viscoelastic 
liquids in COMSOL Multiphysics for further analysis using the multi-physics analyzing ca-
pabilities in the software. 

I. INTRODUCTION 
Electrospinning is a straightforward and inexpensive process that produces continuous 
nanofibres from submicron diameters down to nanometre diameters. The process in-
volves an electrically charged jet of polymer solution or polymer melt consisting of 
polymer molecules with a chain sufficiently long that they do not break up due to 
Rayleigh instability. The basic principles for dealing with electrified fluids were pub-
lished in a series of papers by Taylor in the early 1960s [1, 2]. His ideas later became 
known as the leaky dielectric model. With the advancement of nanotechnology and the 
popularity of the electrospinning process, several other mathematical models were devel-
oped in order to describe the behaviour of the electrospun jet. More recently, electrospin-
ning models have been created so that the electrospinning process could be approxi-
mately analyzed based on the parameters that govern the process. As shown in Fig. 1, the 
electrospinning process consists of three stages that correspond to the behaviour of the 
electrospun jet: the formation of the Taylor cone, the ejection of the straight jet, and the 
unstable whipping jet region.  

The surface of the fluid droplet that is held at the spinneret by its own surface tension 
becomes electrostatically charged with the application of high voltage. As shown in Fig. 
1, the interactions of the electrical charges in the polymer solution with the external elec 
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Fig. 1: Behaviour of the electrospun jet. 

 
tric field result in the formation of the well-known Taylor cone [2]. In [1] and [3], a theo-
retical explanation has been given for the loss of stability and the formation of Taylor 
cone from electrified fluid droplets.  When the Taylor cone is subjected to a very strong 
electric field with an appropriate field gradient at the tip of the cone, the droplet becomes 
unstable, and a single fluid jet is drawn out from the apex of the Taylor cone, as shown in 
Fig. 1. After traveling straight down for a specific position of its path, the ejected liquid 
jet usually becomes unstable with respect to the jet propagation. In a study conducted by 
Hohman et al., they developed a theoretical framework for understanding the physical 
mechanisms of electrospinning and proposed a method of quantitatively predicting the 
parameter regimes where the electrospinning occurs [4]. Feng et al. simplified the Hoh-
man’s model by eliminating the ballooning instability of the electric field calculation. 
The simplified model was tested by comparing its predictions with the experimental data 
for a variety of boundary conditions and parameter values, such as the electric Peclet 
number, the Froude number, the Reynolds number, and the Weber number. Non-
Newtonian rheology was also introduced into the theoretical model of electrospinning, 
and the effects of extension thinning, extension thickening, and strain hardening of the 
polymer solution were examined [5]. Reneker et al. and Yarin et al. contributed signifi-
cantly to the modeling of electrospinning by developing a discrete three-dimensional 
model to describe the dynamics of electrospinning [6, 7]. 

The aim of the present work is to further analyze the electrospinning process based on 
an existing electrospinning model for viscoelastic liquids using a finite element method 
software named COMSOL® Multiphysics.  

 

II. MODEL DEVELOPMENT 
Once the jet flows away from the Taylor cone in a nearly straight line, the travelling liq-
uid jet is subjected to a variety of forces, such as a Coulomb force, an electric force im-
posed by the external electric field, a viscoelastic force, a surface tension force, a gravita-
tional force, and an air drag force [6]. Therefore, the electrospun jet can be represented 
by four steady-state equations as follows [4, 5]. The notations are provided in Table I. 

Taylor cone 

Straight jet 

Whipping jet 

Envelope cone 
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TABLE I : SYMBOLS EMPLOYED AND THEIR DEFINITIONS. 

Symbol Definition Units 
R Jet radius m 
Q Volume flow rate m3/s 
E z component of the electric field V/m 
v Velocity of the jet m/s 
K Conductivity of the solution S/m 
σ Surface charge density C/m2 

I Jet current A 
ρ Fluid density Kg/m3 

τzz Viscous normal stress in  the axial direction N/m2 

p Pressure N/ m2 
γ Surface tension of the solution N/m 
e
tt  Tangential stress exerted on the jet surface 

due to the electric field 
N/ m2 

e
nt  Normal stress exerted on the jet surface due 

to the electric field 
N/ m2 

E∞ External electric field V/m 
τprr Radial polymer normal stress N/ m2 
τpzz Axial polymer normal stress N/ m2 
λ Relaxation time s 
ηp Viscosity of the solution due to the polymer Pas 
η0 Viscosity of the solution at zero shear rate Pas 
α Mobility factor - 
εair Dielectric constant of the ambient air - 
ε Dielectric constant of the solution - 
R0 Jet radius at the origin m 
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4. Coulomb’s integral for the tangential electric field inside the jet 
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In addition, Equations (5) and (6) are considered here to represent the non-uniform uni-
axial extension of viscoelastic polymer solutions [8]. 

 

( ) ''' 2 vvv pprr
p

prrprrprr ητ
η
λαττλτ −=+++                                                                            (5) 

( ) '2'' 2 vvv ppzz
p

pzzpzzpzz ητ
η
λαττλτ =+−+                                                                            (6) 

The Equations (1) to (6) can be transformed into dimensionless form using the dimen-
sionless parameters and groups that are shown in Table II and Table III.  
 

TABLE II: CHARACTERISTICS PARAMETERS EMPLOYED AND THEIR DEFINITIONS. 

Parameters definition 
Length R0 

Velocity 2
0

0 R
Qv
π

=  

Electric field KR
IE 2
0

0 π
=  

Surface charge den-
sity 

00 Eairεσ =  

Viscous stress 
0

00
0 R

vητ =  

 
Inserting these dimensionless parameters and groups into the equations (1) to (6) gives 
the following dimensionless equations. 
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TABLE III: DIMENSIONLESS GROUPS EMPLOYED AND THEIR DEFINITIONS. 

Group definition Group definition 

Froude number 
0

2
0

gR
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0R
L

=χ  

Reynolds num-
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0

00Re
η
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02
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γ

ρ 0
2
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v
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R
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0η
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η
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  As shown in Fig. 2, the boundary conditions are applied at z = 0 and z = χ. Equa-
tions (13), (14), (15), and (16) represent the boundary conditions at z = 0. Similarly, 
Equations (17) and (18) give the boundary conditions at z = χ. 
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Fig. 2: Illustration of boundary conditions. 

 
 The above mathematical model is formulated using the partial differential equation 
(PDE) module in the software named COMSOL Multiphysics. In addition, the results of 
a parametric study investigating the effects of the solution conductivity and the magni-
tude of the external electric field on fibre diameter are presented in the following section. 

III. RESULTS 
A solution is obtained through the model using the desired material parameters 
of 3105.2Re −×= , 1.0=We , 1.0=Fr , 1.0=Pe , 1=pE , 40=β , 5=χ , and 

10=De . The results match quite well with the previous works that have been published 
in [5, 8]. As shown in Fig. 3 (a), the rate of thinning of R is maximum at z = 0, and then 
it relaxes smoothly with the growth of the jet. On the other hand, E shoots up to a peak 
value and then relaxes over the progression of the jet. The electric field E is mainly in-

duced by the axial gradients of surface charges ( ) ⎟
⎠
⎞⎜

⎝
⎛

dz
Rd σ  [5]. For the parameters con-

sidered, it can be estimated as ( ) ( ) Pedz
dRRdz

Rd /2−≈⎟
⎠
⎞⎜

⎝
⎛ σ . Therefore, Equation (10) 

becomes ( ) ( ) Pedz
Rd

dz
dE /ln 2

22
χ≈ , which is a large positive number, hence E ini-

tially shoots up [5]. Physically, the amount of charges that can be conducted reduces with 
decreasing jet radius. However, to maintain the same jet current, the convection has to 
carry more surface charges. Therefore, the density of surface charge gradually increases 
in the region that has been considered in the simulation (χ<5). As the jet gets thinner and  
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Fig. 3: Solutions for (a) R; (b) E; and (c) σ for varying values of Pe. 
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(a) 

 
(b) 

 
(c) 

Fig. 4: Solutions for (a) R; (b) E; and (c) σ for varying values of E∞. 
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faster, electric conduction gradually transfers to convection [5]. The initial oscillation 
that is observed in σ appears due to the chosen value of σ(0). This has been discussed in 
[5] in more detail. Fig. 3 (a), (b), and (c) show the variation of dimensionless radius of 
the jet (R),  the total electric field (E), and the surface charge density (σ) for different Pe 
values which is directly proportional to the conductivity K of the solution. As shown in 
Figures 3 (a) and (c), increasing Pe decreases the stretching of the jet as a result of 
weaker electrostatic pulling force with the decrease of the surface charge density at the 
fluid surface.  

As shown in Fig. 4 (a) and (b), the external electric field E∞ is insensitive to the thin-
ning of the electrospun jet. The reason is the decrease of electrostatic pulling force in 
consequence of the reduction of surface charge density (as shown in Fig. 4 (c)), if the 
current I is held at a constant value. However, in reality, the increase of the strength of 
the electric field also increases the jet current I, relatively linearly [4, 5]. Therefore, as 
reported in [5], Ep is a better parameter to reflect the variation of electric field than E∞. 

IV. CONCLUSIONS 
An electrospinning model was formulated with the help of a finite element method soft-
ware using an existing viscoelastic electrospinning model. The model was validated 
comparing the results that have been published by previous researchers. The model can 
be used for the advanced analysis such as complex electrode geometries using the multi-
physics capabilities in COMSOL multyphysics. 
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