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Abstract— Gauss’s theorem of electrostatics states that the flux of the electrostatic field 

over a closed surface equals 0enc
S

/εQ=⋅∫∫ daE , where encQ  equals the net charge en-

closed by S. In the derivation it is assumed that no charge lies on the surface in question. 
Consider the problem of evaluation of the electrostatic field due to a uniformly charged 
spherical surface on the surface itself. The situation exhibits symmetry but we can’t apply the 
Gauss’s theorem, and we have to resort to other methods like direct integration. In this paper 
we prove a generalization of Gauss’s theorem which allows charges to lie on the surface of 
integration. For the majority of cases the statement of our generalized Gauss’s theorem can 
be assumed to be this: the flux of electrostatic field over a closed surface equals 
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+=⋅∫∫ daE , where encQ  is the net charge enclosed by S and conQ  is the 

net charge contained by S. Applying this theorem to the uniformly charged spherical surface 
we find at once that the field equals exactly half of the field which would have existed if the 
charge lied completely inside the surface in a spherically symmetric manner. Using this gen-
eralization of Gauss’s theorem we present a generalized electrostatic boundary condition, 
which we then use to solve the famous conducting plane image problem without using the 
method of images. 

I. INTRODUCTION 
One of the most important theorems of electrostatics is the Gauss’s theorem. The well-

known theorem states 0enc
S

/εQ=⋅∫∫ daE . It is explicitly stated sometimes1, that the 

boundary of the region enclosed must not contain any point, line or surface charges. But 
what happens if the surface contains such charges in any idealized problem? To my 
knowledge, the generalization of Gauss’s theorem has not been discussed anywhere till 
now, and I present it here. For the next few sections we discuss what missing terms ap-
pear in the gauss’s theorem if we permit presence of charges on the surface of integration. 
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II. FLUX OF THE ELECTROSTATIC FIELD OF A POINT CHARGE 

We prove in this section that the flux of the electrostatic field iE  of a charge iq  over a 

boundary S to a connected region encR  is 
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This statement is axiomatic2 but still I’ll provide a satisfactory proof soon. Yet before 
doing that I’d like to expatiate a little. An analogy is often drawn between the actual situ-
ation and an imaginary situation with the point charge radiating photons at a constant rate 
in a spherically symmetric manner. Since the electrostatic field is given by a radial in-
verse square law equation, the total number of photons passing per unit time through a 
surface can be thought of to be the flux of the electrostatic field through that surface. 
Now if we consider a charge lying on the closed surface under consideration, the total 
number of photons passing per unit time through the closed surface should be obtained by 
multiplying the total number of photons emitted by the charge per unit time by 1 4/ π  
times the inside solid angle formed at the surface at the place where the point charge lies. 
Now let me show my proof for equation 1. If the reader is convinced by the above rea-
soning then the rest of this section can be skipped. 

We denote by ir  the position of iq . Let’s first consider the case A when the charge 

lies outside the boundary S. In this case iE  is differentiable properly over an open con-
nected region containing the surface S along with its enclosure. Application of diver-
gence theorem will yield the result. Let’s now consider the case B when ir  lies on S. Let 

the inside solid angle formed on S at the point ir  be iΩ  in measure. We chose an arbi-

trary non-zero radius δ  sufficiently small, say less than a critical radius cδ , such that the 

part δS  of the spherical surface of radius δ  centered at ir , which lies not outside the 

region encR  enclosed by S, satisfies the following two conditions 

i) It divides encR  into two parts 1δR  and 2δR  such that 2δR , the one not ad-

jacent to ir , is enclosed by a closed surface ′
2δS  which has the inner surfaces 

of S as its inner surfaces in case encR  has cavities. 

ii) It has no missing patches, i.e. δS  is bounded by a single closed curve δP  and 
not by a group of closed curves. 

Hence, the closed curve δP  divides the outer surface of S into two parts, 1δS  and 2δS , 

where 2δS  and δS  together with the inner surfaces of S form the closed surface ′
2δS  
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which encloses 2δR . Also 1δS  and δS  together form the closed surface ′
1δS  which en-

closes the compact region 1δR . Now, we can write the flux of electrostatic field through 
S as 

dadada ⋅+⋅=⋅ ∫∫∫∫∫∫
′′

2δ1δ SSS
iii EEE  

Because when we add the flux 
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Of iE  through δS  to the second integral on the right of equality and subtract the same 
from the first one, we get identity. Now according to the result of case A the second inte-
gral must vanish. The flux of iE  through S can now be easily obtained  
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Finally we consider the case C when ir  lies enclosed by S. We consider any plane 

passing through ir  and denote by 0S  the part of the plane that is enclosed by S. We de-

note again by 1R  and 2R  the regions into which 0S  divides encR , and by ′
1S  and ′

2S  
the closed surfaces that enclose these regions. So we have again 

∫∫∫∫∫∫
′′

⋅+⋅=⋅
21 SSS

dadada iii EEE  

Only this time we are already with an identity, for this time the flux Φ  of iE  through 

0S  is zero. Now according to the result of case B, both the terms on the right of equality 

are equal to 0i /2εq , so that the flux is 

0

i

S ε
q

=⋅∫∫ daiE  

III. THE GENERALIZED GAUSS’S THEOREM 
The principal of superposition for electrostatic field allows us to insist that the flux of the 
electrostatic field over a closed surface S is da⋅∫∫ ∑ )( iE , where the summation is 

done over all charges in the charge configuration. The linearity of the operation of flux 
enables us to insist that the flux is ∑ ∫∫ ⋅ )( daiE . Since the flux ∫∫ ⋅daiE  of any 

charge iq  enclosed by S is oi /εq , the sum of the isolated fluxes of all charges enclosed 

by S is 0enc/εQ , where encQ  is the net charge enclosed by S. Similarly we get that the 



Proc. ESA Annual Meeting on Electrostatics 2011 4 

sum of the isolated fluxes of all charges lying outside S is zero, and that of all charges 
residing on the continuities of S is 0con /2εQ , where conQ  is the net charge residing on 
the continuities of S. By continuities of S, we mean a point on S where the principle cur-
vatures of S vary smoothly so that the inside solid angle formed is equal to 2π . The sum 
of the isolated fluxes of the remaining charges (all of which lie at the discontinuities of 
S) is left as a summation 

∑ ε
=

discon o

ii
d 4π

qΩΦ            (2) 

For we can’t say anything about the inner solid angles iΩ  without a particular 
knowledge of the geometry of the closed surface and the locations of the charges lying at 
the discontinuities. Hence, we have the generalized Gauss’s theorem: 

“The flux of the electrostatic field E  over any closed surface S is 
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++=⋅∫∫ daE      (3) 

Where encQ  equals the net charge enclosed by S, conQ  equals the net charge residing 

on the continuities of S and dΦ  , as described by (2), equals the flux of the electrostatic 
field of the charges lying at the discontinuities of S” 

IV. VARIOUS FORMS OF THE GENERALIZED GAUSS’S THEOREM 
We in this section consider those cases in which the generalized Gauss’s theorem takes a 
beautiful form which we shall call as ‘the simplest form of the theorem’. We begin by 
confining ourselves to an electrostatic field caused by a configuration of charges not con-
taining any point or line charges. In this special case conQ  of equation (3) can also be 
interpreted as the net charge contained by S, for the net charge lying on the discontinui-
ties of S is zero anyway, because S now contains no point or line charges- which were 
the only varieties which could accumulate to a finite amount by assembling only at dis-
continuities. Also dΦ  vanishes in case of an electrostatic field caused by such a config-
uration. This needs some explanation. Let’s imagine a different source charge configura-
tion- the one in which each charge is replaced by a corresponding positive one of an 
equal magnitude. The fact that the net charge lying on the discontinuities of S is zero 
whenever the charge configuration does not contain any point or line charges implies 
that for the original charge configuration we’ll have 0qi =∑

discon
. 

Now since iii qqq ≤≤− , we have 
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The central term in the inequalities is dΦ . So, 
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As the rightmost term in the inequalities is zero, as argued earlier, we have the middle 
term equal to zero. From here we conclude that dΦ  vanishes. Therefore if the source 
charge configuration is free from point and line charges, then 

“The flux of electrostatic field over any closed surface is 

0
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Where encQ  is the net charge enclosed by S and conQ  is the net charge contained by S.”  
Superposing the fluxes we get as a corollary that for any kind of charge configuration  
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Where encQ  is the net charge enclosed by S, surQ  is the net surface charge residing 

on S and plΦ  is the flux of the electrostatic field of the point and line charges residing 
on S. 

Till now (4) was referred to as applicable only in case of charge configurations that 
didn’t contain point and line charges. From (5) it can be seen that (4) holds ‘whenever no 
point or line charge lies anywhere on the discontinuities of S’, for in that case we see (by 
referring to equation (3)) that 0l0ppl /2εQ/2εQΦ += , where pQ  equals the net point 

charge and lQ  equals the net line charge residing on S. And then, since the recent most 
restriction holds if S has no discontinuity at all, (4) holds ‘whenever S is throughout con-
tinuous’. We shall call equation (4) as ‘the simplest form of the generalized Gauss’s the-
orem’ and see that it is almost always applicable. 

V. CONCLUDING REMARKS 
In the introduction I mentioned that for the majority of cases the statement of our 
generalized Gauss’s theorem can be assumed to be this: the flux of electrostatic field over 
a closed surface equals 1/vacuum permittivity times the sum of the net charge enclosed 
by S and half the value of net charge contained by S. Let me now enlist the cases that I 
claim to be in majority  

• The surface of integration doesn’t contain point or line charges at any of the 
corners or edges. 
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• The surface of integration doesn’t have any edge or corner, i.e. it is throughout 
continuous. 

• The source charge configuration consists of only volume charges and surface 
charges. 

VI. THE GENERALIZED ELECTROSTATIC BOUNDARY CONDITION 
Let S be a surface on which at a point r  and “near the point r , on one side of the sur-
face (say side 1)”, only volume and surface charges lie. Let’s assume that this point isn’t 
a discontinuity of the surface and denote by 1n̂  the unit normal to the surface pointing 

towards side 1. Let’s denote the charge density on the surface S at the point r  by )σ(r . 

We’re here seeking a relationship between the limit 1E  of the electrostatic field as we 
approach r  from side 1, and the value E  of the electrostatic field at the point r  on the 
surface. Here I’m considering the electrostatic field to be of the form of a mathematical 
function which is well defined at a point of interest where the function value differs from 
the right hand limit. We draw as a Gaussian surface a closed surface of the form of a very 
thin geometry-box with the plane base of an extremely small area A lying on the surface 
and the remaining part extending in the direction of side 1 to an infinitesimal distance ε  
from the surface. The application of the generalized Gauss’s theorem, which applies here 
in its simplest form, gives us 
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Now, in the limit at the thickness ε  goes to zero, encQ  goes to zero. Also in this limit 

the flux ∫∫ ⋅
S

daE  equals ˆ ˆA A⋅ − ⋅1 1 1E n E n , as in this limit, the sides of the box con-

tribute nothing to the flux. So we get 0ˆ( ) ( ) / 2σ ε− ⋅ =1 1E E n r . As the tangential 
component of electrostatic field is always continuous at a surface charge, our sought for 
relationship between 1E  and E  becomes 

11 nrE(r)(r)E ˆ
02ε
)σ(

=−         (6) 

 We shall call this equation as the absolute electrostatic boundary condition for it can be 
used to arrive at the usual boundary equation in this manner:  

12112211 nEEnnEEnEE ˆˆˆˆ
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σ

=−−==−=−  

Question: A point charge is placed at a distance d from an infinite conducting plane; 
what is the charge density on the plane at a distance r from the foot of the perpendicular 
to the plane from the point charge?  

This is the simplest problem for which the method of images is invoked. I propose to 
use the absolute boundary condition to solve this problem without using the method of 
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images. We select 1n̂  to point inside the conductor so that 1E  vanishes. Generalized 

boundary condition then gives 0ˆ ( ) / 2σ ε− ⋅ =1E n r . Now, from the principal of super-

position )()()( rErErE Sq += , where qE  equals the electric field of the point charge 

q  and SE  equals the electric field of the surface charges on the conducting plane. It 
follows straight from the Coulomb’s law that for any point r  on the conducting plane 
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Because r  is orthogonal to 1n̂ . Utilizing this in the equation 0ˆ ( ) / 2σ ε− ⋅ =1E n r  
we get 

12 2 3/2
0 0

σ( ) qd ˆ( )
2ε 4π (d r )ε

= − − ⋅
+ S

r E r n  

Now, since the electrostatic field of any charge points radially away from the charge, 
we must have SE  orthogonal to 1n̂ . This leads us straight to the solution of the conduct-
ing plane image problem: 

3/222 )d(r
qd

2π
1)σ(

+
−

=r         (7) 

This is a well-known equation, and at present it is held by the physics community that 
it can be derived only using the method of images. 

VII. APPENDIX 
In our solution above, we assumed the electrostatic field to behave as an idealized math-
ematical field. In fact, the field on the surface is discontinuous and it has no well-defined 
value on the surface. The ambiguity can be removed by talking about the electrostatic 
force per unit area on the surface charge instead of the electrostatic field. 

 Let the charge q be at ˆdk  and the upper surface of the conducting plane be the X-Y 
plane. On the plane 2 2 1/2r (x y )≡ +  is the distance from the origin. At any point in 
space the total field is due in part to q and in part to the surface charges induced on the 
plane: q S= +E E E . 

 The electrostatic force per unit area on the surface is 2
0

ˆ( ) / 2σ ε=f r k . Now, 

q S( ) ( ) ( ) ( )σ= +f r r E r f r , where S ( )f r  is the electrostatic force per unit area on the 
X-Y plane due to the charges on the plane. By symmetry, it can have no Z-component. 
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Equating the above two values of f  and taking the dot product with k̂  we get 
2 2 3/2

0 q 0
ˆ(r)/2 ( ) qd/4 (r d )σ ε πε= ⋅ = − +E r k . So, 2 2 3/2(r) qd/2 (r d )σ π= − + . 

 Let me present another solution without using the method of images or any theorem 
presented in this paper. At a general point P on the plane whose distance from the origin 
is r, we have 2 2 3/2

q z 0(E ) qd/4 (r d )πε= − + , and we know q z(E )  is continuous. On 

the other hand S z(E )  is discontinuous in the amount 0/σ ε , and by symmetry is the 
same above and below in magnitude and its direction on both sides is either towards the 
plane or away from the plane. Thus immediately below the plane S z 0(E ) / 2σ ε= − . 
But below the plane, i.e. inside the conductor, the total field is zero. So, 

q z S z(E ) (E ) 0+ = . Hence, 2 2 3/2(r) qd/2 (r d )σ π= − + . 
 Let me present yet another solution. I learnt it from Prof. J.D.Jackson in the reply to a 
mail conveying my solution. 
 Consider any point P on the plane. On the conducting plane, the electrostatic field 
caused by the point charge and the distribution of surface charges must be normal to the 
plane. Otherwise, the charge, free to move, will readjust itself. Now, since the tangential 
component of electrostatic field is continuous at a surface charge, the field is normal to 
the plane both above and below P. If the field just above P due to the surface charges is 

S
ˆ ˆE (cos sin )α α− +k r  (where r̂  is a unit vector in the plane pointing from the origin 

O to the point P), then by symmetry, just below P it is S
ˆ ˆE (cos sin )α α−k r . Since, 

just above P the net field is normal, we have S qE sin E sinα θ= . And just below P the 

net field is zero, so S qE cos E cosα θ= . Hence S qE E=  and α θ= . Thus, we see 

that the net field just above P is q
ˆ-2E cosθ k . Application of Gauss’s theorem to a pill-

box at P that spans the surface (with zero contribution from the side of the box within the 
conductor) gives 2 2 3/2

0(r) 2 cos qd/2 (r d )qEσ ε θ π= − = − + . 
 By arguing without using an image charge we, in our solution, showed that at any 
point on the conducting plane the field due to induced surface charges on the plane is 
constructed by first reflecting q’s field in the conducting plane and then reversing its 

direction. This is exactly the field of an image charge –q placed at ˆ-dk , but we notice 
that after the fact. 
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FOOTNOTES AND REFERENCES 
[1] E.M.Purcell, Electricity and Magnetism, 1st edition, (McGraw Hill, 1965), p.22. 
[2] In many texts it is pointed out that the flux of the electrostatic field of a point charge through any infinites-

imal surface (with the normal to the surface pointing away from the charge) is 04/qdΩ πε , where 

dΩ  is the solid angle subtended by the infinitesimal surface at the position of the charge. E.g. See 
J.D.Jackson, Classical Electrodynamics, 3rd edition, (John Wiley & Sons, 1999), pp.27-28. Once this result 
is known, one can say at once that the flux of the field of a single point charge through a closed surface is 
given by eq. (1). 
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