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Abstract— We make a formal connection between colloidal particle interactions 
and Scanning Force Microscopy (SFM).  This allows for the interpretation of SFM 
measurements on the light of the well studied theories of electrostatics in colloids.  
In this context, we start from an analytical generalization of Derjaguin's approxi-
mation that allows for the interpretation of electrostatic SFM measurements in liq-
uids on charged particles as small as tens of nanometers.  We show applications to 
electrostatic measurements in liquids. 

I. INTRODUCTION 

Knowledge of the form of force-separation functions in Scanning Force Micro-
scopy (SFM) is necessary to build inversion algorithms to measure the morphology and 
chemical activity of the sample under study.  In vacuum, the tip and the sample can be 
modeled as a collection of atoms.  The total tip-sample force can thus be evaluated from 
the appropriate atom-atom forces.  These elemental forces have been modeled via Morse 
and 6-12 pair potentials.  More sophisticated, quantum N-body approaches have also 
been used in the past [1, 2].  Nevertheless, a large number of applications occur for tip-
sample interactions in aqueous solutions where the elemental atom-atom interactions are 
screened by ions at the surfaces.  In addition, beyond applications in SFM, knowledge of 
the plane-particle interaction is significant in particle deposition [3], antireflection coat-
ing [4], data storage [5] and membrane separation processes [6].  Indeed, since the incep-
tion of Colloid Probe Microscopy [7,8], sphere-plane force measurements have become 
routine in aqueous solutions studies. 

Within the Dejarguin-Landau-Verwey-Overbeek (DLVO) theory, the generation 
of closed-form expression for these colloidal interactions has been hampered by the fact 
that analytical solutions to the Poisson-Boltzmann equation (PBE) are restricted to planar 
geometries.  Numerical solutions for other geometries do exist, but it is always desirable 
to have analytical expressions. 

To bypass the difficulty of obtaining analytical solutions to PBE curved geome-
tries, a major effort has been placed on constructing a set of reasonable assumptions that, 
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when taken together with the planar solution to PBE, generate good expressions for the 
interactions between colloidal particles. 

The most celebrated effort in that direction, the Derjaguin approximation, pro-
vides an explicit recipe for the calculation of the interaction energy between two sphe-
roidal particles, from the knowledge of the interaction energy between two planes.  A 
detailed study of the limitations of this approach can be found elsewhere [9], however its 
major restriction is that the radii of curvature of the particles, at closest approach, must 
be much larger than the interaction length.  This condition is not satisfied in many cases 
of interest.  Notably, typical interaction lengths in liquids are 1-10 nm –similar to the 
radius of curvature of sharp SFM tips.  Thus, the Derjaguin approximation is expected 
not to provide a good tool for the analysis of SFM tip-sample forces. 

A more recent approach, the Surface Element Integration (SEI), has been used 
to obtain colloidal interaction energies [10].  In particular, this method has been shown to 
be very robust when restricted to plane-particle interactions.  This geometry is of intrinsic 
interest to SFM when studying extended samples, and for the interpretation of calibration 
procedures. 
   We begin by recalling a relationship between generic plane-plane interaction 
energy, and its corresponding plane-sphere force.  Then we apply that relationship to 
obtain closed-form sphere-plane interactions for the van der Waals.  We also study a 
model system based on experimental data and present explicit formulas for forces in that 
case. 

II. RESULTS 

  We begin from the equation from reference [11] 
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Equation (1) provides an economical prescription to evaluate the particle-surface 
force from knowledge of the energy-separation function between two planes.  It 
presents clear advantages to common numerical approaches, in that equation (1) can 
be directly integrated analytically for many cases of interest.  We show explicit ap-
plications next. 
 
A. Van der Waals interaction 
 

The van der Waals case has been solved a long time ago [12], and we only re-
port it here as an example of use of equation (1). The plane-plane van der Waals in-
teraction is given by [13] 
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  where HA  is the effective Hamaker constant. 

Substituting equation (2) into (1) provides 
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This force comes from the potential 
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which is in agreement with the usual Hamaker’s expression. 
 
B.  Analysis of SFM Experiments 
 

Forces between an SFM tip and a plane in aqueous solutions have been investi-
gated as a function of pH and ionic concentration [14].  Given that the tip, at its clos-
est approach to the surface, appears spherical, it is reasonable to conjecture that the 
tip-plane forces can be derived from equation (1).  Thus, here, the tip plays the role 
of a large colloidal particle.  In addition, once the tip-surface interaction is found, it 
can also be used to gain understanding of a colloidal system, in which the colloidal 
particles interact with the plane. 

The plane-plane energy is [14]: 
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where 1 and 2 are the surface charge densities of plane and tip, and B and 0D are 

parameters, usually determined experimentally [9]. 
 Given the relevance of equation (5) to SFM measurements in liquids, we now use 
equation (1) to produce a closed-form expression for the force-separation, 
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 Figure 1 shows two sets of curves for experimentally relevant situations [14].  The 
dashed lines correspond to plots of equation 6. 
    By having available the expression (6) for the force, we can answer theoretical 
questions.  For example, the zero of F(D) in equation (6) (when 021  ) corres-

ponds to an accretion region for colloidal particles near the surface.  That is, if the 
solution contained colloids, that region is where a large concentration of the particles 
would be found.  Since no zeros exist for 021  one expects a homogeneous dis-

tribution of the colloidal particles, with the exception of a small depletion layer near 
the surface due to the dominant repulsion there.  This problem is of particular current 
relevance to understand adsorption and self-assembly of colloidal nanoparticles on 
surfaces and has been studied both experimentally [15] as well as computationally 
[16].  In addition, from the closed-form expressions reported in this paper we can al-
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so evaluate the gradient of the force at equilibrium, which is related with the effec-
tive spring constant of oscillation of particles around equilibrium.  This parameter, in 
conjunction with the knowledge of the viscosity of the liquid, is related with the time 
scales necessary for the colloidal layer to achieve equilibrium, thus providing a use-
ful tool for colloidal adlayer formation. 

 
 

Figure 1.  SFM tip-surface force curve for experimental parameters nmD 10  , nma 7 , 67210 JmB  , 

5.78r , nm3/1  .  A corresponds to 2
21 )/(20 nmpC , and B to 2

21 )/(20 nmpC .  

The dashed thick lines are those of this work and the thin continuous lines are experimental [17]. 
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