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Abstract—Display devices have been a growing market in the past few decades, they have 
been placed in everything from TV and computer screens to cell  phones and refrigerator 
doors. No single technology has cornered the market. As a result, a lot of scientific studies 
have been carried out in competing technologies such as liquid crystal displays (LCD), organic 
light-emitting-diodes (OLED) and interferometric modulator displays (IMOD) to name a few. 
Another competing technology for this market is in the area of electrostatic particle displays 
(ESPD). For small particles, such as toner particles, the electrostatic force can be the dominate 
force, and this electrostatic force can be used to control the position of the particle. Gauss’s 
law can be used to determine the attractive force on a layer of charged particles situated on a 
grounded electrode. By making this electrode one part of a geometrically designed capacitive 
cell, an electric field can then be applied to the particles to lift them off the electrode and move 
them outside the field of view. By placing three of these geometric cells next to each other, 
each containing a different primary toner color, a pixel can be created and the hue of the pixel 
can be varied based on the potential placed across the cells. A difficulty with this toner display 
technology is in the placing of these particles in and out of the field of view. This paper exam-
ines one electrode geometry and determines the lift-off voltage required to move the particles.

I.  INTRODUCTION

For the past few decades the presentation of visual information in displays by electronic 
means has been improving as newer display technologies develop.  All the new display 
devices operate by applying a voltage which causes a change in a property of the device. 
The most common two right now are Liquid Crystal Displays (LCD) and Plasma Dis-
plays.  The LCD uses an applied voltage to align liquid crystals between two pieces of 
conductive glass which then either allow or not allow light to pass.  Plasma displays use a 
voltage to excite a gas to create photons of light.  The  interferometric modulator displays 
(IMOD) uses an applied voltage to flex a capacitor plate and control the reflections of 
light  by translucent  mirrors  [1] and organic  light-emitting-diodes  (OLED)  emits light 
when a voltage is applied across a semiconductor material.  A newer device, referred to as 
the electrostatic particle display (ESPD) device – discussed in this paper and currently un-
der development – uses an applied voltage to move particles in and out of the field of 
view to produce either reflective or transmitted light.  In all these devices the quality-of-
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display can be characterized by graphing the applied voltage versus a property of the de-
vice that controls light output.  For optimum performance good linear control of the prop-
erty by the voltage is desired to allow the correct amount of light to be transmitted to the 
viewer.  

In this paper the electric field will be determined throughout a pixel cell within the 
ESPD device, and then the cell will be characterized by plotting the liftoff voltage used to 
remove particles from the field of view versus the position of a particle in the device.

II.  THE ESPD CELL

A single cell of the ESPD device is shown in Fig. 1.  A single cell in the device is used 
to make a black and white pixel.  The cell consists of a planar electrode 98 μm in length 

and two side electrodes – each 14  μm in height – which rest on top of 3  μm insulated 
spacers.  In the cell there are two rows of acrylic toner particles of density 1.2 g/cm3.  At 
the present time the particles of interest are either 1 μm or 2.8 μm in diameter.  For a col-
or pixel there would be three such adjacent cells one for each of the three primary colors; 
e.g., either red, blue, and green or magenta, cyan, and yellow.  By moving these particles 
in and out of the field of view, the complete color spectrum can be revealed.  

III.  PARTICLE PHYSICS

In charged particle physics every particle has a defined mass and charge.  In order to lift 
charged particles off a conductive plate, the  force that holds the particles to the plate 
needs to be determined.  Once the force is determined, a counter force needs to be ap-
plied in order to lift the particles off the plate. The physics needed to determine the elec-
trostatic adhesion of the particles to a plate is presented below. For the particle size near 
1 μm the gravitational, surface tension, and van der Waals forces are assumed to be neg-
ligible compared to the electrostatic attraction force and are ignored. 

A.  Charged particles on a plate
The  particles  under  study are  tiny solid  charged  spheres  similar  to  toner  particles. 

When a particle is considered a sphere, the particle can then be considered a point parti-
cle.  That is a particle whose mass and charge can be considered as centered at the origin 
of the sphere.

The permittivity of a substance is defined as
=r 0  (1)
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where  εr is called the dielectric constant (also referred to as the relative permittivity) 
which is a property of the material, and ε0 is the permittivity of free space and equal to 
8.85 x 10-12 F/m.

Using Gauss’ Law and applying it to a uniformly charged spherical particle of diameter 
dp gives the charge qp contained in the sphere as it relates to the electric field Esp on the 
surface of the charged particle as

q p=0 E sp d p
2 . (2)

When a group of charged particles, each with a diameter dp, are placed close-packed in 
a monolayer on a flat plane, each particle occupies an area on the plate of dp

2. So (2) gives 
the charge per unit area on a flat plate due to the charged particles as

q p

d p
2 =0 E sp . (3)

B.  The Charging of particles
When a particle is in a gas, such as air, and is passed through a region containing a charg-
ing electric field Ec  and unipolar ions, these ions will be driven to the particle. As a parti-
cle receives a charge qp, its surface field will eventually reach the value of the charging 
field and no further charging will take place. When a non-conductive particle has a di-
electric  constant  εr some of the charging field  lines  will terminate on the molecule’s 
dipoles moments.  Eventually, the particles will reach the Pauthenier limit, which is the 
saturation charge due to field charging, and is given by [2], [3] 

q p ,max=0 C p E c d p
2  (4)

where
C p=3r /r2 . (5)

A typical safe charging electric field Ec is 1 MV/m, whereas a typical breakdown elec-
tric field Ebd is 3 MV/m.  Some like to make a calculation assuming that it is possible to 
place particles in a charging electric field equal to the breakdown field. In other words, 
that Ec= Ebd. Under this condition, when these particles are placed on a flat plate, (4) and 
(5)  give a charge per area on the flat plate of

q p , max

d p
2 =0 C p Ebd=0

3r

r2
Ebd ideal; not realistic. (6)

Using Ebd=3Ec as a more practical limit of a charging field, (4) and (5) give the maximum 
charge per area when these particles are placed on a flat plate of

q p , max

d p
2 =

3
0 C p Ebd=0

r

r2
Ebd practical limit. (7)

However, from Gauss's law (3) gives the electric field at the particle's surface, and it is 
known that  Esp can not exceed the breakdown field Ebd.  So, Gauss's law gives an upper 
limit of
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q p , max

d p
2 =0 E sp=0 Ebd Gauss's law limit. (8)

Comparing  (7) with  (8) it can be seen that for high dielectric materials the practical 
charging limit reaches the Gauss's law limit, whereas for materials with a dielectric con-
stant near unity the charge per unit area on a flat plate will be only a third of the Gauss's 
law limit.

A practical limit must be set such that on a charged particle, the surface field can be re-
lated to the breakdown field by 

E sp= f real Ebd  (9)
where freal is the fraction or ratio of the actual charge on the particle to the maximum the-
oretical charge possible. Hence, the maximum charge of a particle in the Pauthenier limit 
is given by

q p ,max=0 f realC p Ebd d p
2=0 f ' real Ebd d p

2  (10)

where for high dielectric constant materials f'real is typically found to be 0.3 [2], and
f ' real= f real C p , (11)

whereas, the maximum charge of a particle in the Gauss's law limit is given by

q p ,max=0 f real Ebd d p
2  . (12)

Since the Gauss's law limit is the limit when the corona-charging field is removed, it is 
the more likely physical phenomena of final charge retention and will be used in the re-
mainder of this discussion.  Hence, the charge per area on a plate due to the monolayer of 
charged particles is 

q p , max

d p
2 =0 f real Ebd  (13)

where freal ≤ 1: namely, freal is unity for ideal charging and freal is typically found to be 0.3 
[2].

C.  Adhesion of particles on a plate
The electric field due to a monolayer of particles on a flat ground plate when no external 
field is applied can be determined using Gauss's law. To do this, first a Gaussian surface 
is constructed that only covers the counter-charges in the plate. The electric field at the 
top of this Gaussian surface is the electric field at the bottom of the monolayer of parti-
cles. This attractive electric field is

E A, bop=
1
0

Q
Ae

= 1
0

dq
da

= 1
0

q p

d p
2 =

1
0
 0 E sp=E sp  (14)

Next, another Gaussian surface is constructed that covers both the monolayer of parti-
cles and the counter charges in the plate.  Since the total charge is the sum of all  the 
charges, the electric field on this Gaussian surface is zero

E A , top=0 . (15)
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The average attractive electric field across the particle is 

E A, e=
E A ,topE A , bop

2
=
E sp0

2
=

2
E sp=


2

f real Ebd . (16)

The same procedure can be used to calculate the average electric field on a second lay-
er when two layers are present. For this situation the first Gaussian surface encloses the 
bottom monolayer of particles and all the counter-charges in the planar electrode. The 
second  Gaussian  surface  encloses  both  monolayers  of  particles  and  all  the  counter-
charges in the planar electrode. The result gives the same average attractive electric field 
(16) as for a single layer .

IV.  GEOMETRY OF THE CELL

To model the cell in general terms, the cell of Fig. 1 is redrawn in Fig. 2; and the cell is 
now composed of a planer electrode of length L that stretches across the bottom of the 
cell.  The height of the side electrode and spacer system is H.  The height bs is the height 
of the insulator or spacer.  The terms a and b are the semi-major and semi-minor axis of 
an elliptical field line S' centered at the origin or an elliptical field line S'' centered at a 
distance L from the origin.

With the planar electrode grounded, when a voltage is applied to the side electrode, an 
electric field is set up within the cell. To determine the force on a charged particle located 
at any general point  P within the cell, the electric field at the point must first be deter-
mined.  If the point P is situated along the x-axis, then this electric field can be used to de-
termine the liftoff voltage of a particle resting on the planer electrode. 

When two parallel plate electrodes are charged to create a difference of potential  V 
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Fig.  2: A pictorial representation of an ESPD cell showing elliptical electrical 
field lines.  All the field lines coming from the left side electrode are marked S', 
and the field line coming from the right electrode is marked S''.  The cell has 
three regions; Region I is controlled by the spacer, and Region II is controlled 
by the H/L ratio.  A third region, not analyzed, is inside an area that makes a 
circular arc with a radius of bs and where very little particle movement occurs.
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across them, the electric field lines start from charges on the positive electrode and termi-
nate on charges at the negative electrode.  As Gauss's law has shown, these electric field 
lines enter and leave the conductive electrodes  perpendicular (or normal) to the plane of 
the electrodes.  If one of the electrodes is rotated 90 degrees, the field lines still begin and 
end on the charges in the electrodes. Furthermore, the field lines must still leave and enter 
normal to the plane of the electrodes.  As a result, the field lines must follow elliptical 
shaped lines such as S' and S'' as shown in Fig. 2.

A.  Length of a field line
To describe the electric field everywhere within the ESPD cell, the equation of an ellipse 
centered at the origin of an xy plane can be used as shown in Fig. 3.  The equation of an 
ellipse centered at the origin is

x2

a2
y2

b2=1 (17)

where a is the semi-major axis of the ellipse and b is the semi-minor axis. It will be ad-
vantageous to describe an electric field line and how it varies as a function of the distance 
a along the planar electrode.  Referring to Fig. 3 the relationship between the radial dis-
tance r to arbitrary point P(x, y) on an elliptical line is 

r 2=x2 y2  (18)
and the relation between the angle β and the distance along x is

x=r sin . (19)
Solving (17) for  y2 as a function of  x2  and substituting y2  from (18) into the result, and 

then substituting x from (19) into this result and then solving the equation for r shows

r= a
1−k 2sin2 

 (20)

where

k=1−b2/a2  (21)
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Fig. 3: An elliptical field line located in the xy has a particle at 
point P on this line a distance r from the origin.  The angle θ is 
between the tangent Line and the x-axis, whereas, the angle β is 
between r and the y-axis.
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and is referred to as the eccentricity of the ellipse and is always less then unity k 21 .
Next, taking the incremental length of an ellipse dl=r d  and substituting (20) for r 

and integrating over a quarter of the distance of the ellipse gives

∫
0

s

dl=∫
0


2 a
1−k2 sin2

d =a K k   (22)

where S is the length of the ellipse from the side electrode at b to the planer electrode at 
a.  This integral is called a complete elliptic integral and is known as the elliptical inte-
gral of the first kind [4].  In writing complete elliptic integrals, the eccentricity k, which 
acts as an independent variable is often omitted and K(k) is simply written as K.  The se-
ries representation for K is [4]

K = 
2
[1 1

2

2

k2
1⋅3
2⋅4


2

k 4...[
2n−1!!

2n n!
]

2

k 2n...]

= 
2
[1∑

n=1

n=∞


2n−1!!
2n n!


2

k 2n] .
 (23)

Therefore, (22) can be written as 
S=a K  (24)

with the integral representing K being replaced by (23) and where S is the length of the 
field line that terminates at a distance a along the x-axis. Another exact expression for a 
quarter length of the perimeter of an ellipse is given by [5]

S=a 
2 ∑n=0

∞ −1
2n−1 [ 2n !

2n n!2 ]
2

k2n≡a K  (25)

where the first term (n = 0) is equal to 1 whereas all the others are negative correction 
terms.  The use of (25) is more easily programmed on a spreadsheet because a spread-
sheet usually contains the factorial function as one of its subroutines.

V.  DEFINE THE PARTICLE ON A FIELD LINE.
Although it is useful to calculate the length of a line that terminates at a distance a along 
the x-axis by using (25), it is more useful to calculate the length of any line that starts on 
the side electrode, goes to the planar electrode and also goes through a general point P.  

The point P(x, y) on a field line that crosses the x-axis at a is described by (17). The ra-
tio

a /b=H / L  (26)
defines the shape of the elliptical field throughout Region II of the ESPD cell.  If  b in 
(17) is replaced by b in (26) and then (17) is solved for a, the result is

a= x2L /H 2 y 2  (27)

and if  (27) is substituted into  (25) the length of the electric field line that goes through 
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point P(x, y) is

S x , y =a K= x2L /H 2 y2 K . (28)

The electric field line will be in the direction of the tangent line at the point  P(x,  y). 
Taking the equation for an ellipse (17) and solving for y, then differentiating with respect 
to x gives

dy
dx

= −bx
aa2− x2

=−H
L 

2 x
y

 

(29)

which is the slope at a point P(x, y) on the perimeter of the ellipse, which is also the tan-
gent line. 

A.   Location of a point
The problem can be broken up into two separate problems.  In the first problem, the in-
tersection of the left-side electrode and planar electrode are positioned at the origin of a 
Cartesian coordinate system as seen in Fig. 2.  Then an elliptical field line S' centered at 
the origin is analyzed. The analysis allows a description of the x and y components of the 
electric field at any point on the line S' as will be discussed below.  

In the second problem the intersection of the right-side electrode and planar electrode 
are positioned at a distance x=L, y=0 in the same Cartesian coordinate system.  An ellipti-
cal field line S'' centered at x=L, y=0 is then analyzed. The analysis allows a description 
of the x and y components of the electrical field at any point on the line S''.  If the point 
P(x,  y) lies on both lines S' and S'' as depicted in Fig. 2, then the electric fields at  both 
lines S' and S'' can be added together using the law of vector superposition to give the to-
tal electric field at the point.  Since the geometry of the cell is symmetric about a vertical 
line located at L/2, only half the cell needs to be analyzed.  However, there will be an ef-
fective electric field line resulting from all the charges on the left electrode at any point P 
as well as an effective electric field line resulting from all the charges on the right elec-
trode at that same point P.  Using symmetry the left half and right half of the cell will be 
mirror reflections of each other.

1) Left Electrode
The equation of an ellipse (17) describes the path of an electric field line between two 
electrodes 90º apart, one situated in the xz plane the other in the yz plane.  In other words, 
equation (17) describes any field line approaching the planar electrode at a and the left 
side electrode at b.  The slope of (17) at the point P(x, y) is given by (29).  From Fig. 3 it 
can be seen that this slope is tanθ' , and hence

'= tan−1 [ tan ']=tan−1 dy
dx =arctan [− H

L 
2 x

y ]  (30)

Finally it can be seen from Fig. 3 that 

E x
' =E ' cos'   (31)

and 

E y
' =E ' sin'  (32)
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where E' is the magnitude of the electric field at the point P(x, y).  The magnitude of E' is 
simply the voltage applied at the side electrode divided by the path length S' that trans-
verses the distance from the left side electrode to the grounded planar electrode.  This 
path length based on (28) is 

S ' x , y =a K= x2L /H 2 y2 K  (33)

2) Right Electrode
An elliptical curve, centered at the point (L,0) of the xy plane in a Cartesian coordinate 
system which has a semi-major axis a and semi-minor axis b, and goes through the point 
P(x, y), is shown in Fig. 2 and is given by 

x−L2

a2  y2

b2 =1 . (34)

Equation (34) can be solved for a which gives 

a= x−L2L /H 2 y2  (35)

and when (35) is substituted into (25) the final result is

S ' ' x , y =a K= x−L2L/H 2 y2 K . (36)

Next,  (34) can be solved for  y, and then taking the derivative of  y with respect to  x 
gives, with the help of (26), the slope of the curve at the point P(x, y) as

dy
dx

= −bx
aa2− x2

=−H
L 

2 x−L
y

 

(37)

This slope is the tangent line at the point P(x, y) and makes an angle θ'' with the x axis.   

' '= tan−1 [ tan ' ']=tan−1 dy
dx =arctan [− H

L 
2 x−

y ]  (38)

As a result the field components are given by

E x
' '=E ' ' cos ' '   (39)

and 

E y
' '=E ' ' sin ' '   (40)

where E'' is the magnitude of the electric field at the point P(x, y).  The magnitude of E'' 
is simply the voltage applied at the side electrode divided by the path length S'' that trans-
verses the distance from the right side electrode to the grounded planar electrode.

B.  Three region cell
The geometry of the electrostatic cell can be broken up into three regions as shown in 
Fig. 2.  The three regions are Region I, Region II and a third region, which is not marked 
and is inside an area that makes a circular arc with a radius of bs.  This third region is not 
analyzed because very little particle movement in the x-direction can occur in this region. 

The edge of the left and right side electrodes rest on insulator spacers, and in the region 
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where the side electrode and the insulator meet the electric field strength becomes very 
high.  As a result the region of high electric field strength near the insulator spacer (Re-
gion I) must be treated differently than the region away from the spacer (Region II).  This 
Region I is controlled primarily by the insulator  spacer height.  Away from Region I is 
Region II where the cell's general system structure of height H and length L determine the 
eccentricity of the field lines.

1) Region I
As depicted in Fig. 2, for a charged particle located in Region I there will be two field 
lines one from the left electrode and one from the right electrode that will sum to create 
the net or effective electric field at the particle. The field line coming from the right will
conform to the system geometry (b/a = H/L = constant).  However, the left field line will 
conform to the spacer geometry (b = bs = constant).  The eccentricity defined by (21) for 
the field line in Region I coming from the left electrode is no longer the constant de-
scribed by (26).  Instead, the eccentricity must conform to the requirement that b = bs for 
all field lines within Region I.

If the particle is located in Region I then the equation of an ellipse (17) must be rewrit-
ten as

x2

a2
y2

bs
2=1 . (41)

The effective electric field line starting at  bs and terminating at  a must be determined 
based on both the position of the point and the height of the insulator spacer. For this sit-
uation, the position coordinates x and y and the spacer height bs are known, so following 
the operations as before and solving for a gives

a=
bs x

bs
2− y2  (42)

Thus, the eccentricity of the ellipse describing the electric field line is 

k s=1−bs
2/a2=1−bs

2− y2/ x2  (43)

where x≥bs .  If x≤bs then elliptical field lines have their semi-major axis along y 
and not x as stated earlier. This defines the third region and is not analyzed in this paper.  

By combining (25) and (42) the length of the field line in Region I is

S s
' =a K s=

bs x

bs
2− y2

K s . (44)

The slope of the line at P(x, y) is determined by solving (41) for y and then differentiat-
ing with respect to x to give

dy
dx

=−
bs

2− y2

xy
. (45)

The slope of (41) at the point P(x, y) is given by (45), and, as before, is tanθS
', so
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s
'=tan−1 [ tan s

' ]=tan−1dy
dx =arctan−bs

2− y2

xy  . (46)

Finally, it can be seen from Fig. 2 that 

E x
' =E ' coss

'   (47)

and 

E y
' =E ' sins

'  (48)

where E' is the magnitude of the electric field at the point P(x, y). 
Due to symmetry of the cell, only the left half side of the cell needs to be analyzed.  For 

a charged particle located in Region I the field lines will conform to the spacer geometry 
(b = bs = constant), the left field line follows path Ss' and can be described by (44), (45), 
(46), (47), and (48).  The second field line follows path S'' and conforms to the system ge-
ometry (b/a = H/L = constant).  Any field line coming from the right electrode can be de-
scribed by (36), (37), (38), (39) and (40).

2) Region II
For a charged particle located in Region II both field lines (which follow paths S' and S'') 
will conform to the system geometry (26).  Any field line coming from the left electrode 
can be described by (28), (29), (30), (31) and (32).   Any field line coming from the right 
electrode can be described by (36), (37), (38), (39) and (40).

VI.  ELECTRIC FIELDS IN THE ESPD CELL

As mentioned in the introduction, one of the goals of this paper was to determine the 
electric field throughout the ESPD cell.  The electric field E at any point P(x, y) is com-
posed of two components Ex and Ey and is written as

E=ExEy=Ex xE y y . (49)
The procedure to obtain the values of Ex and Ey are discussed below.

A.  Electric field in Region I
The electric field  E at any point  P(x,  y) in the ESPD cell is composed of two electric 
fields,  E' coming from the left electrode and  E'' coming from the right electrode.  The 
method to obtain the explicit values of Ex and Ey in (49) is

E = E'E' '

= E x
' xE y

' yE x
' ' xE y

' ' y
= E x

' E x
' '  xE y

' E y
' '  y

= E x
' cos s

' E x
' ' cos' ' xE y

' sins
'E y

' ' sin' '  y

= V coss
'

S s
' cos ' '

S ' '  xV sin s
'

S s
' sin' '

S ' '  y
 (50)

11



Proc. ESA Annual Meeting on Electrostatics 2008, Paper A4

In Region I, θs' is defined by (46) for the left electrode and θ'' is defined by (38) for the 
right electrode.  The value of Ss' is defined in (44) and S'' is defined by (36).

B.  Electric Field in Region II
To get the electric field at any point P(x, y) in Region II simply replace Ss' with S'  and θs' 
with θ'  in equation (50). So, in Region II the value of S'  is defined by (28) for the left 
electrode and the value of S'' is defined by (36) for the right electrode.  The value of θ' is 
defined by (30) for the left electrode and θ'' is defined by (38) for the right electrode.  

VII.  LIFT-OFF VOLTAGE VS PLANAR ELECTRODE DISTANCE

Applying a voltage V to the electrodes give rise to an electric field E defined by (50) at 
any point P(x, y) in the cell.  The adhesion force is normal to the planar electrode, so the 
y component of the electric field created by the applied voltage must be greater than the 
electrostatic adhesion force (16) to lift the particle off the plate, i.e., 

E yE A ,e  (51)
If the point P(x, y) = P(x, 0) is on the planar electrode, then the angles θ' and θ'' will be 
90 degrees and the electric fields are in the y direction.  However, the field lines that go 
through the center of mass of a particle resting on the planer electrode will be will be at 
the point P(x, y) = P(x, dp/2) and Ey will be slightly dependent on θ' and θ''. Fortunately, 
this can be taken into account because equation (50) has the angles.  

If a charged particle is resting on the planar electrode in Region I, then using (16) and 
using the y component of (50) into (51) and solving for V gives the liftoff voltage as

V 


2

f real Ebd


1
S s

' 
1
S ' ' 

=
aL K s aR K

2a L K saR K 
 f real Ebd  (52)

where aL is the value from (42) and aR is the value from (35).  The values of aL and aR 

must be evaluated at the point P(x, y) = P(x, dp/2).
If a charged particle is resting on the planar electrode in Region II, then using (16) and 

using the y component of (50) into (51) and solving for V gives the liftoff voltage as

V 


2

f real Ebd

 sin'

S ' sin ' '

S ' ' 
=

aR aL f real Ebd

2 aR sin'a L sin' ' 
K  (53)

where aL is the value from (27) and aR is the value from (35). 

A.  Results
The main purpose of this paper is to determine the liftoff voltage as a function of position 
along the planar electrode.  To do this, the particle position along the planar electrode 
must be known.  Also, the liftoff force must go through the center of the particle.
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A uniformly charged spherical particle can be treated as a point particle with its center 
of mass and center of charge located at the center of the particle.  While resting on the 
planar electrode, its center of mass and center of charge is located at y = 0.5dp above the 
planar electrode.  If the particles are resting as a monolayer on the planar electrode, then 
the nth  particle is located at a distance x = dp(n-0.5) from the left side electrode.  The nth 

particle will be located at the point P  x , y=P [n−0.5 ]d p ,0.5d p .  Equations (52) 
and (53) can be used to determine the liftoff voltage at any point P(x, y) within the cell. 
For particles on the planar electrode the liftoff voltage as a function the distance from the 
left electrode is shown in Fig. 4.

Each data point in Fig. 4 represents a particle.  The first particle is located in the third 
region and is not plotted.  It can be seen in Fig. 4 that there is good linear control of parti-
cle liftoff for the second through sixth particles from the left electrode, after which there 
is hardly any control of the particles.  The ratio given in (26) determines the field lines 
throughout most of the cell, which is essentially all of Region II in Fig. 2.  The demarca-
tion line in  Fig. 2 which separates Region I from Region II is where b = bs. Using the val-
ues for H,  L and bs given in Fig. 1 and substituting them into equation (26) gives an el-
lipse crossing the  x-axis at approximately 17  μm.  As a result, essentially all the linear 
control of the particles occurs in Region I.  Thus, the next generation cell needs to have a 
larger insulating spacer to get more linear control of the liftoff of particles. 

VIII.  CONCLUSIONS

In this paper it was shown that a novel electrostatic particle display (ESPD) device – hav-
ing the cell geometry depicted in Fig. 1 – could be analyzed using elliptical integrals of 
the first kind to determine the electrical field at any point in the cell.  The cell could be 
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Fig. 4: Liftoff voltage as a function distance from left side electrode of 
the cell in Fig. 1 for 2.8 μm diameter particles charged to 30% of max-
imum ( freal = 0.3). Only data from the left half of the cell is shown as 
the right half is the mirror image.   
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broken up into three regions.  A spacer region with a very high electric field (Region I) 
and a system geometry region of lower electric field (Region II) and a third region in the 
corners of the cell – that for the present geometry did not need to be analyzed.  Region I 
produced good linearity between the liftoff voltage and particle position.  However, Re-
gion II has poor linearity.  The next generation cell needs to have a larger insulating spac-
er to get better linear control of liftoff of particles throughout the ESPD cell. 
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