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Abstract— A probabilistic version of a well-known phenomenological model for contact 
electrification is used to examine the effect of fluid turbulence on charge development for 
suspended particles as a function of the particle Stokes number. The distribution of particle 
collisions and particle charge appear to approach asymptotic states for high values of the 
Kolmogorov-scale Stokes numbers, exhibiting approximately normal distributions.  

I. INTRODUCTION 

Contact electrification is the transfer of charge that occurs when two particles collide 
with each other or when a particle collides with or rolls along a surface [1]. This phe-
nomenon of charge transfer is usually called contact electrification when it occurs as a 
result of particle collisions and it is called triboelectric charging (or tribocharging) when 
it occurs due to frictional contact between materials that slide or roll relative to each 
other. Contact electrification of particulates in a turbulent flow occurs widely in both 
industrial and natural processes. Contact electrification in various process industries, 
such as coal mining, sawmills, grain mills and storage facilities, is known to lead to dan-
gerous explosions of dust clouds [2]. Contact electrification is responsible for develop-
ment of electric field gradients leading to formation of lightning in sandstorms [3-5] and 
volcanic eruptions [6-7]. Contact electrification due to dust storms plays a particularly 
important role on dusty planets, such as Mars, where it is responsible for the strong am-
bient charging of dust particles [8-10]. A leading theory for development of electric 
charge within thunderstorms is that it is caused by contact electrification due to collision 
of ice particles within the storm cell [11-12]. Similarly, contact electrification of ice par-
ticles in planetary ring systems, such as that of Saturn, lead to particle charging that in-
fluences the structure of the rings and their interaction with the planetary atmosphere 
[13-14]. A theoretical study by Desch and Cuzzi [15] propose contact electrification of 
micrometer-scale particles in a turbulent environment as being responsible for formation 
of lightning in the solar nebula, which is important for formation of the small mm-scale 
chondrules that serve as the building blocks of the planetary system.  

There has been a great deal of recent research on fundamental issues associated with 
particle contact electrification. Despite its importance to a large range of problems, many 
fundamental aspects of contact electrification remain unresolved. Even the most basic 
question of what exactly is transferred between the two colliding materials that gives rise 
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to the charge differential is at present not entirely clear, and may in fact differ for differ-
ent types of contact electrification processes. The problem is not a lack of explanations 
for the electrification process, but instead too many plausible explanations. Material par-
ticles, ions and electrons have all been proposed as possible charge carriers [16-20]. A 
traditional view of contact electrification is represented by the triboelectric series, which 
empirically orders materials to indicate the direction of charge transfer during contact 
electrification. However, the triboelectric series is not always reproducible [21-22], and 
order within the series can sometimes be reversed, such as following ultraviolet irradia-
tion [23]. Contact electrification has also frequently been observed between chemically 
identical insulator particles [24-26]. Material inhomogeneity, asymmetric contact, elec-
tron band gap defects, and local polarization have all been used to explain the charging 
mechanism [19,  24, 27-29]. 

Despite on-going research on the fundamental physics of contact electrification, rea-
sonable phenomenological models of particle charge exchange exist with which one 
might proceed to investigate other issues associated with the phenomenon [25, 30-32]. 
Following this line of thought, the current paper examines the influence of the surround-
ing turbulent flow field on the particle electrification process. We note that contact elec-
trification examples, such as those discussed in the first paragraph of this section, take 
place in a wide variety of fluid flow environments, ranging from normal earth atmos-
phere to the low-pressure Martian atmosphere to the near-vacuum conditions of Saturn's 
rings, and for particle sizes ranging from about 1 m to 1 cm. The degree of interaction 
between the colliding particles and the fluid in which they are suspended can be charac-
terized by a dimensionless parameter called the Stokes number, St, which is defined as 
the ratio of the characteristic time scale p  for particle drift relative to the fluid and the 

fluid time scale f . For sufficiently small particles the Stokes drag law can be used to 

write the particle time scale as dmp  3/ , where m and d are the particle mass and 

diameter, respectively, and   is the fluid viscosity. The fluid time scale is typically taken 
to be the fluid convective time, given by the ratio ULf /  of the characteristic fluid 

length scale L to the fluid velocity scale U. The current paper examines the influence of 
fluid turbulence on contact electrification of colliding identical particles for different 
values of the particle Stokes number. 

II. COMPUTATIONAL METHOD 

A. Particle Transport 

The particle collisions were simulated using the hard-sphere model, as described by 
Crowe et al. [33]. The hard-sphere model solves the particle impulse equations during 

collisions to obtain the post-collision particle velocities )1( inv  from the given pre-

collision velocities )(inv  and restitution coefficient e . For two particles labeled 1 and 2, 

the restitution coefficient is defined by 
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where n is the unit normal vector from the centroid of particle 1 to that of particle 2. The 
hard-sphere model also solves the angular impulse equations to obtain the particle angu-
lar rotation rate after the collision. The model uses Coulomb's law of friction for the slid-
ing force and assumes that once a particle stops sliding, there is no later sliding of the 
particle. During the time period in-between collisions, the simulation method solves the 
particle momentum and angular momentum equations for the particle velocity and rota-
tion rate, subject to forces and torques induced by the fluid, including viscous drag and 
torque, Saffman lift [34-35], and Magnus lift [36]. Added mass force, pressure gradient 
force and Bassett force are negligible based on the parameter values used in the computa-
tions. Electrostatic forces (Coulomb and dielectrophoretic forces) were also neglected on 
the assumption that particle charges were too weak for these forces to be significant in 
comparison to the fluid drag. The fluid velocity was interpolated from a 1283 Cartesian 
grid onto the particle locations with cubic accuracy using the M 4  variation of the B-
spline interpolation method developed by Monaghan [37].  

As two particles collide, the contact force between the particles is transmitted via a 
flattened contact region, across which the particle surfaces are separated by a small gap 
of width  . The gap thickness is on the order of a nanometer, which for micrometer-
scale or larger particles is much less than the particle diameter. For spherical particles, 
the contact region has a circular shape with radius )(ta . For non-adhesive particles, the 

contact region radius starts at a value of zero at the onset of contact, increases during the 
compression stage of the collision to a maximum value of maxa , and then decreases again 

during the recovery stage of the collision until it vanishes again at the particle detach-
ment point. An expression for the maximum contact region radius can be obtained using 
the Hertz [38] contact theory as  
 

 
5/122

max 16

15










E

RMw
a r , (2) 

 
where nvv  )]()([ 12 iiwr  is the relative radial velocity between two particles labeled 

'1' and '2' prior to the ith collision, and M, R and E are the effective mass, radius and elas-
tic coefficient of the colliding particle pair, defined by 
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Here nm , nr , nE , and n  denote the mass, radius, elastic modulus and Poisson's ratio 

for particle n, respectively. 
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B. Contact Electrification 

The phenomenological contact electrification model used in the current study is a sto-
chastic version of the model proposed by Duff and Lacks [30] and Lacks and Levan-
dovsky [28]. The original model assumed that the charge carrier for contact electrifica-
tion is a set of electrons trapped in high-energy band gaps, which transfer into a low-
energy state when transported to a second particle during particle collision. However, it 
was noted by Castle [39] that the model is equally valid with ions as the charge carrier 
(see also [21]). The number of charge carriers at time t is denoted by )(, tN nH  on a parti-

cle n with diameter nd . If the initial surface number density of charge carriers is n , 

then nnnH dN  2
, )0(  . When a particle collides with another particle, each particle 

transfers to the other particle all of the charge carriers within a distance cutr  of the con-

tact point, where the contact point is the centroid of the contact region. For instance, in a 

collision between particles 1 and 2 at a time ct  in which charge carriers are exchanged 

between both particles, the change in number of charge carriers, )(, tN nH , for each parti-

cle is given by 
 

 1
2

1,  cutH rN  , 2
2

2,  cutH rN  . (4) 

 
The change in particle charge due to the collision is given simply by the product of the 
number of charge carriers exchanged and the electric charge Ce  per charge carrier. Duff 

and Lacks [30] examined several different values for the distance cutr  and found that the 

value selected did not significantly modify the qualitative nature of the contact electrifi-
cation predictions. Since typical charge carriers, such as high-energy electrons or ions, 
can only travel short distances either between particles or on a particle surface, the physi-
cally correct value of cutr  is the maximum contact region radius maxa , given by (2). 

However, this choice can lead to a requirement for a large number of computations per 
particle in order to observe significant contact electrification, and so might not be compu-
tationally feasible. A reasonable approach to accelerate the numerical computation is to 
prescribe cutr  to a be a multiple of maxa , such that  

 
 maxDarcut  ,  (5) 

 
where 1≥D  is an acceleration factor.  

At any time t, the surface of a particle consists of some regions with available charge 
carriers and some regions in which the charge carriers have already been cleared away by 
transfer to another particle. If particle 1 collides with a second particle 2 in a contact re-
gion with available charge carriers on particle 1 but without available charge carriers on 
particle 2, then the electric charge is transferred only from particle 1 to particle 2, but not 
from particle 2 to particle 1. Duff and Lacks [30] presented a computational approach in 
which they used a set of sub-particles attached to the particle surfaces to represent high-
energy electrons on the surface, which were then removed within a region of radius cutr  
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following each collision. Of course, this approach is quite time-consuming for large num-
bers of particles. In the current paper, we alternatively propose a stochastic approach for 
dealing with depletion of charge carriers from the particle surface. Specifically, we de-
note by )(, tA nH  the total area on a particle n with available charge carriers at time t, such 

that at the initial time 2
, )0( nnnH dAA  , where nA  is the surface area of particle n. A 

collision of particle 1 with another particle 2 is considered to consist of two stages   ̶   a 
forward transfer of charge carriers from particle 1 to particle 2 and a reverse transfer 
from particle 2 to particle 1. In the forward transfer stage, we select a random variable 

1p  with uniform probability distribution between 0 and 1. If 11,1 /)( AtAp H , then the 

collision is taken to have occurred at a location with available charge carriers on particle 
1. In this case, the change in number of charge carriers and the change in area occupied 
by available charge carriers on particle 1 are given by   
 

 1
2

1,  cutH rN  , 2
1, cutH rA  . (6) 

 
If 11,1 /)( AtAp H , then the collision is taken to have occurred at a location with no 

available charge carriers on particle 1, and there is no change in the number of charge 

carriers or in 1,HA . In the reverse transfer stage, we again select a random number 2p  

with the same probability distribution. If 22,2 /)( AtAp H , then the collision is taken to 

have occurred at a location with available charge carriers on particle 2, such that  
 

 2
2

2,  cutH rN  , 2
2, cutH rA  . (7) 

 
Again, no changes are made if 22,2 /)( AtAp H . After both the forward and reverse 

transfer stages of contact electrification are completed, the net change in charge of the 
two particles over the time step is given by 
 
 )( 2,1,21 HHC NNeQQ  . (8) 

C. Fluid Flow 

Isotropic, homogeneous turbulence was numerical generated using the pseudo-
spectral direct numerical simulation (DNS) approach of Vincent and Meneguzzi [40]. In 
this approach, the computational domain is a triply-periodic cube, and we use second-
order Adams-Bashforth time stepping for the nonlinear convection term and exact inte-
gration for the viscous term. The spectral Navier-Stokes equations were evolved in time 
after having been projected onto a divergence-free space using the operator 

ijjiij kkkP  2/  according to the expression 
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where an overbar denotes Fourier transform in three space dimensions, a superscript in-
dicates the time step, and k is the wavenumber vector with magnitude k. The Fourier 
transform of the force vector F on the right-hand side of (9) is given by 
 
 FfωuF  , (10) 

 
where Ff  is the small wavenumber forcing term required to maintain the turbulence with 

approximately constant kinetic energy. The velocity field was made divergence-free at 
each time step by taking its Fourier transform and using the spectral form of the continu-
ity equation, given by 
 
 0uk . (11) 
 
The forcing vector was assumed to be proportional to the fluid velocity [41-42], such that 
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where the coefficient C was adjusted at each time step in order to maintain constant tur-
bulent kinetic energy (in spectral space). The current computations were performed with 

5critk , so that the forcing acts only on the large-scale eddies. 

The fluid flow computations were performed on a 1283 cubic grid with domain side 
length 2 . A preliminary computation was conducted with no particles to allow the tur-
bulence to develop a range of length scales characteristic of statistically stationary homo-
geneous isotropic turbulence for 5000 time steps with a time step size of 005.0t . The 
computation was then restarted with 64,000 particles randomly distributed in the compu-
tational domain and with the initial particle velocity set equal to the local fluid velocity. 
The turbulence kinetic energy q and dissipation rate   were obtained from the power 
spectrum, )(kE , as 

  

  max

0
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k
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Various dimensionless measures describing the turbulence in the validation computations 
are listed in Table 1, including the root-mean-square velocity magnitude 0u , the average 

turbulence kinetic energy q, the integral length scale /5.0 3
00 u , the Taylor micro-
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scale 0
2/1)/15( u  , and the Kolmogorov length scale 4/13 )/(   . The corre-

sponding microscale Reynolds number is 99/Re 0   u .  

 

TABLE 1. DIMENSIONLESS SIMULATION PARAMETERS AND PHYSICAL PARAMETERS OF THE 

FLUID TURBULENCE.  

Simulation Pa-
rameters 

Turbulence Parameters 

Time 
step 

0.005 
Turbulent kinetic energy, 
q 

0.115 

Cycles 50000 Dissipation rate,   0.009 
Grid 3128  Kinematic viscosity,   0.001 

  Integral length, 0  1.18 

  Taylor microscale,   0.357 
  Kolmogorov length,   0.0183 

  Integral velocity, 0u  0.277 

  Integral time, T  4.26 

III. RESULTS AND DISCUSSION 

A. Characteristics of the Fluid Flow 

The direct numerical simulations (DNS) of the turbulent flow field were conducted as-
suming one-way coupling with the particles. The computed power spectrum )(ke  is plot-

ted in Fig. 1a as a function of the product of the wavenumber magnitude k and the Kol-

mogorov length scale 4/13 )/(   , showing the expected 3/5k  dependence in the iner-

tial range and a faster drop-off for higher wavenumber in the dissipation range. The com-
puted velocity probability density function (p.d.f.) in one coordinate direction (x-
direction), normalized by the root-mean-square velocity, is shown in Fig. 1b. The DNS 

predictions are observed to be close to a best-fit Gaussian curve )5.0exp(8.0)( 2vvp  , 

where rmsxx vvv ,/ , in agreement with standard observations for the turbulence flows 

[43]. The p.d.f. of the x-component of the fluctuating fluid acceleration field is plotted in 
Fig. 1c. Fluid acceleration is computed from the DNS velocity field for post-processing 
purposes using a centered difference approximation in space and a forward difference in 
time. Also shown in this fig. is the empirical expression for the p.d.f.,  
 

  })/1/{(exp8.1)( 2
221

2 3 ccacaap
c

  , (14) 

 
obtained experimentally by La Porta et al. [44]. In this expression, rmsxx aaa ,/ , and the 

coefficients are given by a best fit to La Porta et al.'s experimental data as 539.01 c , 
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508.02 c , and 588.13 c . The acceleration p.d.f. exhibits a non-Gaussian “superstatis-

tical” distribution characterized by a fat tail, which is typical of a highly intermittent sig-
nal [45-47]. Mordant et al. [48] suggested that the observed acceleration intermittency in 
turbulent flows can be associated with the presence of coherent vortex structures. 
 

   
 (a) (b) (c) 

Fig. 1. Plots characterizing direct numerical simulations of turbulent flow: (a) power spectrum showing 
3/5k  

scaling in inertial range, (b) velocity probability density function with DNS data (symbols) and best-fit Gaussian 
curve (solid line), and (c) probability density function for acceleration with DNS data (symbols) and best-fit 
function to the experimental data of La Porta et al. [44] (solid line).  

 

B. Effect of Stokes Number on Contact Electrification 

The effect of fluid flow on the particle collision and electrification was examined by con-
ducting a series of simulations with different values of the Kolmogorov-scale Stokes 
number, St, defined by  
 

 
K

P




St . (15) 

 
Here, the particle time scale  dmP 3/  is a function of the particle mass m and di-

ameter d and the fluid viscosity  , and the Kolmogorov time scale is defined by 
2/1)/(  K . Computations were performed for a set of six Stokes numbers ranging 

from 1.1 to 33.6. In all computations, the total number collisions in the system )(tB  ex-

hibits approximately linear increase with time after a short transient period. The slope of 

)(tB  following the initial transient, divided by the computational volume 3)2(  , yields 

the collision rate per unit volume, cn . We plot the variation of cn  with the Stokes num-

ber in Fig. 2. The collision rate exhibits a peak near 5St  .  
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Fig. 2. The collision rate per unit volume, cn , for different values of the Kolmogorov-scale Stokes number St. 

 
The approach of the particle system to an equilibrium charge state can be observed by 

plotting the time variation of the total transferred charge, transQ , defined as half of the 

sum of the absolute value of the charge of each particle. The total transferred charge is 
plotted in Fig. 3 as a function of time for different Stokes numbers. The value of transQ  

approaches an equilibrium value at long time, after all the charge carriers initially at-
tached to the particles in the system have been expended via collisions with other parti-
cles in the system. The larger the collision rate cn , the more opportunities for a particle 

to transfer charge, and hence the more quickly this equilibrium condition is attained. 
However, the results in Fig. 3 also depend on the relative velocity at collision between 
the particles, which effects the contact area as indicated in (2) and hence the number of 
charge carriers that are transferred at each collision. For Stokes numbers above about 6, 
the differences in value of cn  in Fig. 2 and in the plot of transQ  versus time in Fig. 3 are 

observed to be small.  
 

 
Fig. 3. The time development of total transferred charge transQ  for different Stokes numbers. 
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For a closer examination of particle collision, we count the number of collisions for 
each particle, denoted by pb , and compute the probability density function (p.d.f.) of 

collision number by dividing the range of variation of pb  into equal-size bins. The result-

ing p.d.f. for collision number is plotted in Fig. 4 for St = 33.6 at five different values of 
the total number of collisions in the system, B. The p.d.f. of collision number at this 
Stokes number is observed to closely approximate a normal distribution, as indicated by 
the curves plotted in Fig. 4. As run time increases and the total number of collisions in 
the system accumulates, the distribution of number of collisions grows wider. To facili-
tate a comparison of different Stokes number cases, the collision number p.d.f. is plotted 
in Fig. 5 by dividing the value of pb  by the total number of collisions B , and also by 

multiplying the value of the y-axis variable by B to ensure that the integral of the p.d.f. is 
equal to unity. The plot in Fig. 5 is made for different Stokes number values at a time 
when the total number of collisions is 000,500B . The resulting p.d.f. plot approaches 
a common normal distribution as the value of Stokes number increases, with mean value 

5101.3/ Bbp .  

 
Fig. 4. The probability density function (p.d.f.) of the number of collisions for a particle, pb , for a case with St 

= 33.6, plotted at different values of the total number of collisions in the system, B. The black solid lines repre-
sent best-fit normal distributions. 

 

 
Fig. 5. The probability density function (p.d.f.) of nondimensionless collision number of particle, Bbp / , for 

different Stokes numbers when the total number of collisions 000,500=B . The black solid line represents the 

best-fit normal distribution in the high-St limit. 
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The observation that the collision distribution approaches a normally-distributed p.d.f. 

can be explained with use of the central limit theorem. For each collision, the probability 
that a given particle i is involved in this collision is 
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where pN  is the total number of particles in the computational system. Assuming linear 

variation in time t, the total number of collisions B can be written as VtnB c , where V 

is the volume of the computational domain. After B collisions in the system, the probabil-
ity of particle i having undergone s collisions can be expressed as  
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which is a binomial distribution with mean Bp  and variance )1(2 pBp  , where 

p is a constant given by (16). When B becomes large, Stirling’s approximation 

BeBB BB 2~!   can be used to yield an asymptotic approximation for (17) as  
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The asymptotic approximation (19) for ),( BsP  is a normal distribution with mean   

and variance 2 . Since the particles are identical and independent, ),( BsP  also 

represents the probability distribution of collision number for the particles. We note that 
the assumption that the particle collisions are independent holds only for large Stoke 
numbers. For small St, two particles that have recently collided would be more likely to 
collide with each other again, so that the collisions would no longer be independent.  
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The probability distribution function of the radial relative velocity (RRV) at contact is 
shown for different Stokes numbers in Fig. 6. For large Stokes numbers (St > 10), the 
RRV distribution is found to be closely fit by the skew-normal distribution, 
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
, where erf(x) is the error function. For 

smaller values of the Stokes numbers (e.g., St = 1.1), the RRV distribution is close to the 

exponential distribution, xey 25.104125.2  . As St decreases, the mean value of the RRV 

distribution also decreases, implying small contact area and small amounts of charge 
transfer during collisions.  

 
Fig. 6. The probability density function (p.d.f.) of radial relative velocity at contact, rw , for different Stokes 

numbers when 000,500=B . The solid line is a skew-normal distribution, and the dashed line is an exponential 

distribution.  

 
In these computations, it was assumed that each particle is initially completely cov-

ered by available charge carriers, which the particles gradually lose by collisions with 
other particles until no available charge carriers remain. We define a particle as being 
'involved in the electrification processes' if it has undergone at least one collision but still 
has some available charge carriers remaining. The ratio of available charge carriers at the 
current time to that at the start of the computation is called the charge carrier depletion 
ratio, )(, tR nH , which is defined for particle n by  

 

 
)0(

)(
)(

,

,
,

nH

nH
nH N

tN
tR  , (20) 

 
where )0(,nHN and )(, tN nH  are the number of available charge carriers of particle n at 

the initial time and at time t, respectively. The charge carrier depletion ratio )(, tR nH  is 

equal to unity at the start of the computation for all particles, and it approaches zero at 
long time as all available charge carriers are expended by transferring onto colliding par-
ticles. Fig. 7 shows the time development of the distribution of )(, tR nH  for all particles 

involved in the electrification process for different values of the total number of colli-
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sions B, for a case with St = 33.6. As the total collision number B increases, the peak of 
distribution moves from nearly unity to nearly zero.  

 
Fig. 7. Time variation of the p.d.f. of the charge carrier depletion ratio )(, tR nH  for particles involved in the 

electrification process for a case with St = 33.6, plotted at different values of the total number of collisions B.  
 

A plot showing the p.d.f. of the charge carrier depletion ratio for different Stokes 
numbers when 000,500B  is given in Fig. 8. At this intermediate stage, most of the 
particles are involved in the electrification process and the p.d.f. is observed to be close 
to a normal distribution. The mean value of the )(, tR nH  distribution represents the aver-

age ratio of charge carriers that have been expended at a given time. The distributions of 
)(, tR nH  are almost the same for cases with different Stokes numbers for large values of 

St, while the mean value of )(, tR nH  is larger for small St values. The p.d.f. distribution 

for )(, tR nH  at the midpoint of the electrification process, when the mean value 

5.0, nHR , is plotted in Fig. 9 for different Stokes numbers. We similarly see that the 

normal distribution is a good fit for all cases, but that the variance of the distribution is 
somewhat smaller at small St than at large St values, which is related to the observed 
lower values of the relative radial velocity for small Stokes numbers.  

The net charge on each particle is zero at the beginning of the computation. Charge is 
exchanged between the particles during the contact electrification process until the equi-
librium state is reached, at which time all of the available charge carriers have been ex-
pended and after which the charge on each particle remains constant. A plot of the distri-
bution of particle charge, pq , in the equilibrium state is given in Fig. 10. The equilibrium 

charge distribution is observed to form a nearly normal distribution which has somewhat 
smaller variance for small Stokes numbers, but to asymptote to a common curve for large 
Stokes numbers.  
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Fig. 8. The probability density function (p.d.f.) of the charge carrier depletion ratio HR  for different Stokes 

numbers when the total number of collisions 000,500=B . The solid line denotes the best-fit normal distribution 

to the high St cases.  
 

 

Fig. 9. The distribution of HR  for different Stokes numbers when the mean value 5.0≈,nHR . The solid line 

is the best-fit Gaussian to the high St cases. 
 

 
Fig. 10. The distribution of charge of particle pq  for different Stokes numbers when 000,000,2=B . The 

solid line is the best-fit Gaussian curve to the high St cases. 
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IV. CONCLUSION 

We have coupled a probabilistic version of a phenomenological contact electrification 
model to a pseudo-spectral direct numerical simulation method for homogeneous turbu-
lence and a hard-sphere discrete-element method for particle transport and collisions in 
order to advance understanding of the effect of fluid turbulence on particle contact elec-
trification. The observed distributions of particle charge development are found to be 
insensitive to Stokes number for St greater than about 6, but to be highly sensitive to 
Stokes number for values of St near unity.  

The probability density functions for number of collisions and for number of charge 
carriers are observed to be approximately normally distributed for high St cases, as 
would be expected from the central limit theorem for independent random processes. 
However, for small St cases (near unity and below), the particle relative radial velocity at 
collision is observed to approach an exponential distribution, indicating an increased 
tendency for collision between neighboring particles, which leads to a break-down of the 
assumption of independent collisions. The particle charge approaches a constant value at 
large time, when all of the available charge carriers have been removed from the particle 
surfaces via collisions. The resulting charge distribution is found to be well approximated 
by a normal distribution for all Stokes number values examined. Cases with high Stokes 
number (above about 6) approach an asymptotic charge distribution which is nearly in-
dependent of Stokes number. Cases with lower Stokes number values, near unity, also 
seem to approach a nearly normal charge distribution, but with significantly smaller 
variance than for the high Stokes number cases.   
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